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Abstract. The problem of prepositional phrase attachment is crucial to
various natural language processing tasks and has received wide attention
in the literature. In this paper, we propose an algorithm to disambiguate
between PP attachment sites. The algorithm uses a combination of su-
pervised and unsupervised learning along with the WordNet information,
which is implemented using a back-off model. Our use of the available
sources of lexical knowledge base in combination with large un-annotated
corpora generalizes the existing algorithms with improved performance.
The algorithm achieved average accuracy of 86.68% over three test data
sets with 100% recall. It is further extended to deal with the multiple
PP attachment problem using the training based on single PP attach-
ment sites and showed improvement over the earlier works on multiple
pp attachment.

1 Introduction

Prepositional phrase (PP) attachment problem addresses structural ambiguity
in natural language processing which is a major source of errors in parsing. The
goal of PP attachment is to decide the attachment site of a given PP in the
sentence. For example, consider the following sentences

a) Mary ate the salad with a fork.
b) Mary ate the salad with croutons.

In sentence a), the PP ’with a fork’ attaches to the verb eat rather than the noun
salad and is called adverbial attachment. In sentence b), the PP ’with croutons’
attaches to salad rather than eat and is called adjectival attachment.

1.1 Related Work

The problem of disambiguation between the PP attachment sites has received
wide attention in natural language processing. Many rule-based methods, sta-
tistical methods which comprise of supervised and unsupervised methods and
hybrid methods are proposed for the ambiguity resolution.



The prominent among the supervised methods which use annotated cor-
pora for ambiguity resolution is the transformation-based approach by Brill and
Resnik [1] with reported accuracy of 80% and the back-off approach to smoothen
the probabilities of unseen attachments by Collins and Brooks [2] with reported
accuracy of 84.5%. Ratnaparakhi et al [7] considered lexical information within
the verb phrase and used maximum entropy model to achieve the accuracy of
81.6%. Stetina and Nagao [9] used the WordNet thesaurus and sense tagged
corpus to achieve the accuracy of 88.1% using a decision tree for classification.
Though supervised methods dominate unsupervised methods in performance
and the accuracy achieved by Stetino and Nagao [9] is close to the human ac-
curacy of 88.2% reported by Ratnaparakhi et al [7], the non-availability of large
amount of annotated corpus is a serious limitation.

On the other hand, the unsupervised methods use un-annotated corpus and
infer attachment site based on the lexical association. Hindle and Rooth [4] used
the lexical associations of verbs and nouns by computing co-occurrence frequen-
cies, which resulted in 82% correct attachments for a set of around 3000 test cases
from the Penn Tree bank. Pantel and Lin [6] proposed an iterative approach us-
ing unsupervised training data. The algorithm uses contextually similar words
derived from a collocation database and a corpus based thesaurus for classifica-
tion with 84% accuracy. Zavrel et al [11] proposed a nearest-neighbor algorithm
using memory based learning with an accuracy of 84.4%. Zhao and Lin [12] also
used nearest-neighbor approach using various similarity measures and the algo-
rithm achieved 86.5% accuracy using the cosine of mutual information as the
similarity measure. Srinivas and Bhattacharya [8] extracted unambiguous data
from raw corpus based on heuristics, expanded it using WordNet and used it
as a training set, which yielded an accuracy of 83.86% on test data prepared
by Ratnaparakhi et al [7]. Volk [10] combined the supervised and unsupervised
approaches and used the back-off model for disambiguation on German corpus,
achieving an accuracy of about 81% with a small annotated corpus of 10,000
sentences.

1.2 Proposed Approach

In this paper, we propose an approach which combines the strength of supervised
and unsupervised approaches and also uses WordNet information whenever avail-
able to improve the disambiguation of attachment of a given PP. Our approach
handles the problem of sparse data and the use of WordNet significantly differs
from the earlier approaches (Stetino and Nagao [9]; Srinivas and Bhattacharya
[8]).

The training phase consists of supervised and unsupervised learning from
annotated and un-annotated corpora and computing supervised and unsuper-
vised scores. The supervised scores for quadruplets, triplets and pairs are anal-
ogous to the scores considered by Collins and Brooks [2]. Further, information
is iteratively extracted from the un-annotated corpus and is used to compute
unsupervised scores for triplets and pairs. In addition, synonyms of verb and
nouns present in a quadruplet are extracted from WordNet and their supervised



and unsupervised scores are appropriately used to compute supervised and un-
supervised WordNet scores respectively. All the calculated scores effectively give
probability estimates of verb and noun attachments in the given situation. A
convex combination of all these scores is used for disambiguation of the attach-
ment of a given PP using a back-off model similar to Volk [10]. The approach
achieves an accuracy of 86.5% on the test data in [7] containing 2998 quadru-
plets. The algorithm was also tested on two other data sets and achieved an
average accuracy of 86.68% with 100% recall over all three data sets.

We further extend the algorithm to handle the problem of multiple PP at-
tachment. A sentence often contains multiple prepositions, increasing the number
of possible attachment sites and thus complicating the PP attachment problem
further. For instance, out of 1223 sentences extracted from Penn Tree Bank,
containing at least one preposition, all had two prepositions and 43% had three
prepositions. The problem of multiple PP attachment has not received much
attention in the literature. To our knowledge, there is a single reported attempt
by Merlo et al [5] to disambiguate attachment sites in case of multiple PPs
in a sentence. They used generalized back-off approach, re-using the single PP
attachment training information for multiple PP attachment and achieved an
accuracy of 84.3% for first PP, 69.6% for the second and 43.6% for the third PP
on data extracted from Penn Tree Bank.

Our extended algorithm when run on the data extracted from Penn Tree
Bank showed the accuracy of 86.5% for the first PP, 71.9% for the second and
58% for the third PP. The algorithm was also applied to the test data used
by Merlo et al [5] and resulted in the accuracy of 88.99% for the first PP and
73.4% for the second PP. The noun belonging to the last PP in the sentence is
not available in this test data and hence the accuracy of our algorithm for the
third PP could not be calculated. The algorithm showed improvement over the
accuracy achieved by Merlo et al for the first two PPs.

The rest of the paper is organized as follows. Section 2 briefly discusses the
single and multiple PP attachment problem and Section 3 describes the train-
ing data. Section 4 details the supervised and unsupervised learning. Section 5
presents the disambiguation algorithm for single PP attachment and its evalu-
ation. Section 6 discusses the extension of the single PP algorithm to multiple
PP attachment problem and its evaluation and the conclusions are presented in
Section 7.

2 Characterizing the PP-attachment Problem

We first consider the single PP attachment problem. Given a sentence with
a single PP, the sentence is typically reduced to a quadruplet (V, N, P1, N1)
where V is the head verb, N is the head noun of the of the object of V , P1

is a preposition and N1 is the head noun of the PP (Ratnaparakhi et al [7];
Pantel and Lin [6]; Volk [10], among others). Thus, the PP attachment problem
simplifies to the binary classification task of attaching the PP (P1, N1) to V

(adverbial attachment) or to N (adjectival attachment).



In case a sentence contains multiple prepositions, the attachment sites for
all the PPs need to be determined. An average English sentence usually con-
tains multiple verbs as well as multiple PPs. For example, consider the following
sentence from Penn Tree Bank,

ACET will shortly be opening a new office in the east end of London to serve
clients in North and East London
which has three PPs and two verbs. The general structure of a sentence having
multiple PPs can be represented by

Va Na P1 N1 P2 N2 · · · Vg Ng Pk Nk · · ·

As a result, there is a multi-fold increase in the possible attachment sites for the
second and subsequent PPs. In particular, for the sentence above, the represen-
tation is

Va Na P1 N1 P2 N2 Vb Nb P3 N3

and the possible attachments for the preposition phrases can be listed as
• (P1, N1) → Va, Na

• (P2, N2) → Va, Na, N1

• (P3, N3) → Va, Vb, N2, Nb

For instance, the possible attachment sites for the preposition ’of ’ (P2) in the
sentence above are open, office, end. The increase in the number of possible
attachment sites of subsequent PPs complicates the problem. Also, the presence
of multiple verbs in the sentence further adds to the existing complexity. Note
that the attachment ambiguity of the first PP (P1, N1) is the same as that of a
single PP discussed earlier.

We assume that the attachment of a PP in a sentence is independent of
the attachment of any other PP that occurs before or after it in the sentence.
However, we use a few linguistic rules to rule out certain possible attachment
sites, which are discussed in detail in Section 6.

3 Data description

As mentioned earlier, our approach is a combination of supervised and unsuper-
vised methods which uses two annotated and un-annotated corpora each.

The first annotated corpus1 consists of 20,801 tagged quadruplets (V, N, P1, N1)
from Wall Street Journal(WSJ), extracted from Penn Tree bank by the group at
IBM. This corpus has been extensively used in earlier works on PP attachment
(Ratnaparkhi et al [7]; Stetina and Nagao [9]; Zavrel et al [11], among others).
The second annotated corpus consists of 1800 sentences extracted from texts
G and H of British National Corpus (BNC)2 and manually tagged by us. The
first un-annotated corpus consists of 40,000 untagged sentences from WSJ . Our
second un-annotated corpus consists of around 37 million words extracted from
the texts A, B, C and D of BNC.

1 ftp://ftp.cis.upenn.edu/pub/adwait/PPattachData
2 http://www.natcorp.ox.ac.uk



For testing the single PP attachment algorithm, we considered three data
sets. The first data set (data set I) is from the Penn Tree Bank (WSJ), consisting
of 2998 tagged quadruplets collected by Ratnaparkhi [7]. The second data set
(data set II) consists of manually tagged 1209 sentences which we extracted
from Penn Tree Bank using TGrep2 1. For the third data set (data set III), we
consider 4583 quadruplets corresponding to the first PP attachments from the
test data used by Merlo et al [5]2. The first test data for multiple PP attachment
algorithm (data set IV) consists of 1223 manually annotated sentences extracted
automatically from the Penn Tree Bank. In addition, we also tested the algorithm
on the data (data set III) used by Merlo et al [5].

4 Learning from Training Data

In this section, we introduce the supervised and unsupervised scores based on
supervised and unsupervised learning methods.

4.1 Supervised Learning

Initially, a few preprocessing steps such as morphing, converting all words to
lower case, replacing numbers and years by a common token ’NUMBER’ etc were
carried out on the annotated corpora. The frequencies of quadruplets, triplets,
pairs and prepositions for noun and verb attachment were calculated. Based on
these frequencies, we compute the following supervised and unsupervised scores
analogous to [2].

DV = f(0, V, P1, N1) + f(0, N, P1, N1) + f(0, V, N, P1)

DN = f(1, V, P1, N1) + f(1, N, P1, N1) + f(1, V, N, P1)

where f stands for frequency of occurrence of the triplet in data, 0 stands for
verb attachment and 1 for noun attachment. The supervised verb and noun
scores for triplets are

VsupN
(V, P1, N1) =

DV

DV + DN
, NsupV

(N, P1, N1) =
DN

DV + DN
(1)

The subscripts N and V in supN and supV in (1) above stand for the exact N

and V present in the quadruplet, indicating the dependence of the scores on N

or V respectively.

Similarly, we compute the scores for the pairs (V, P1), (N, P1) and preposi-
tion P1 which are denoted by VsupN,N1

(V, P1), NsupV,N1
(N, P1) and Vsup(P1),

Nsup(P1) respectively.

1 http://tedlab.mit.edu/ dr/TGrep2/
2 http://www.latl.unige.ch/personal/cathy f.html



4.2 Unsupervised Learning

In order to learn from un-annotated corpus, we carried out an iterative approach
analogous to Pantel and Lin [6] with modified scores. Each sentence of the un-
annotated corpus was parsed using Minipar1 ignoring the PP attachments. The
parsed sentences were used to extract the quadruplets of the form (V, N, P1, N1)
for every existing PP (P1, N1). Each of the extracted quadruplet was reduced to
two triplets (V, P1, N1) and (N, P1, N1) and an initial value of 0.5 was assigned
to each triplet. The value of 0.5 can be interpreted as the initial probability that
the PP (P1, N1) gets a verb or a noun attachment. If only one triplet is extracted
from a parsed sentence, a value of 1 is assigned to it. Let Vvalue(V, P1, N1) be
the sum of the initial values assigned to (V, P1, N1) over the entire corpus and
similarly we compute Nvalue(N, P1, N1). For a specific triplet (V, P1, N1), we
define proportion as

Prop(V, P1, N1) =
Vvalue(V, P1, N1)

∑

vi
Vvalue(vi, P1, N1)

(2)

where vi ranges over all verbs occurring with the PP (P1, N1) in the un-annotated
corpus. Prop(V, Pi, N1) is an empirical estimate of the probability that the PP
(P1, N1) occurs with this specific verb V . These proportions are analogous to
the frequencies defined by Pantel and Lin [6], but unlike them, we retain P1 and
N1 in the computations. We believe that N1 provides context information and
as pointed out by Collins and Brooks [2], the preposition P1 plays a major role
in deciding the attachment

Starting with the initial value in (2), we iteratively modify Prop for V by
modifying Vvalue to Prop(V, P1, N1)+

∑

ni
Prop(V, P1, ni)+

∑

vi
Prop(vi, P1, N1)

+
∑

vi,ni
Prop(vi, P1, ni). Effectively, this is a back-off smoothing to get better

expectations of Vvalue from the unsupervised corpus. Note that the computation
of Vvalue is the Expectation-step and estimating probabilities through Prop is the
Maximization-step of the EM algorithm. By using back-off smoothing of Vvalue

in between, we modify the expectations computed in the E-step. The iterations
are continued till the value of Prop(V, P1, N1) stabilizes. The stabilized value
gives a smoothed estimate of the probability mentioned earlier. Prop(N, P1, N1)
is computed on the same lines using Nvalue.

From the Prop values of triplets thus obtained, we calculate the unsupervised
scores for triplets as,

Vunsup(V, P1, N1) =
Prop(V, P1, N1)

∑

vi
Prop(vi, P1, N1)

(3)

Nunsup(N, P1, N1) =
Prop(N, P1, N1)

∑

ni
Prop(ni, P1, N1)

(4)

where the sum in the denominator of (3) is over all the verbs which co-occur with
(P1, N1) in the training set. The unsupervised scores for pairs are calculated on
the same lines and we skip the details here..

1 http://www.cs.ualberta.ca/ lindek/minipar.htm



The resulting database at the end of the learning stage consists of triples and
pairs with their corresponding supervised and unsupervised scores.

5 Single PP attachment

We now propose an algorithm for the disambiguation of attachment sites for a
single PP. As mentioned earlier, the algorithm combines the information learnt
from supervised and unsupervised learning with that of WordNet.

Methods incorporating WordNet in PP attachment algorithm have been pro-
posed earlier by Stetina and Nagao [9] for sense disambiguation in constructing a
decision tree for PP attachment disambiguation, and Srinivas and Bhattacharya
[8] to expand the training set size by replacing each word in the training set
by its synonyms. As mentioned earlier, our use of WordNet significantly differs
from the above two approaches.

For disambiguation, if the given quadruplet (V, N, P1, N1) is present in the
annotated corpus, it is assigned the attachment given by the annotated corpus.
Otherwise the sets of synonyms are extracted from WordNet for each of V , N

and N1, which we denote by CV , CN and CN1
respectively. Using the quanti-

ties defined in (1)-(4) for the two triplets (V, P1, N1) and (N, P1, N1), we define
WordNet scores for V and N as follows

WVi(V, P1, N1) =











∑

vi∈CV

∑

ni∈CN

∑

n1i∈CN1

g(Vsupni
(vi,P1,n1i))

|CV |∗|CN |∗|CN1
| if i = sup

∑

vi∈CV

∑

n1i∈CN1

g(Vunsup(vi,P1,n1i))
|CV |∗|CN1

| if i = unsup

(5)

WNi(N, P1, N1) =











∑

vi∈CV

∑

ni∈CN

∑

n1i∈CN1

g(Nsupvi
(ni,P1,n1i))

|CV |∗|CN |∗|CN1
| if i = sup

∑

vi∈CV

∑

n1i∈CN1

g(Nunsup(ni,P1,n1i))
|CV |∗|CN1

| if i = unsup

(6)
If any of the triplets is not present in the training corpus, the score is taken to
be zero. The function g used in the scores in (5) and (6) is an appropriate weight
function. In particular, one can consider binary functions of the type g(Vsupni

) =
1 if Vsupni

> Nsupvi
and 0 otherwise. We consider the convex combinations of

the scores introduced in (1) to (6) above to define the final scores which are used
for the disambiguation and are given by

FinalV Scorei(V, P1, N1) = α WVi(V, P1, N1) + (1 − α) Vi(V, P1, N1) (7)

FinalNScorei(N, P1, N1) = α WNi(N, P1, N1) + (1 − α) Ni(N, P1, N1) (8)

where α is an appropriately chosen value between 0 and 1 and i is sup or unsup

as the case may be. For the pairs (V, P1), (N, P1) and (P1, N1) extracted from
the given quadruple (V, N, P1, N1), the WordNet scores and the final scores are
calculated on similar lines. The details of the score calculations for the pairs are
presented in Appendix.



To summarize, the disambiguation algorithm is as follows. Given a quadru-
plet, if the preposition is ′of ′, a noun attachment is assigned irrespective of the
verb. Next, if the quadruplet exits in the supervised data the tagged attachment
is assigned. Else, a back-off model is employed using the final supervised scores
first and then unsupervised scores if needed, at each stage of the model. Also,
at each stage, if FinalV Score is larger than FinalNScore, verb attachment is
assigned and noun attachment otherwise. If no attachment is assigned up to the
pair stage, the algorithm goes to Level B, where the site is assigned based on the
attachment given to the preposition in the annotated corpus. If this leads to a
tie, the algorithm goes to Level C, where the default attachment of noun is given
to the PP, since it has been reported that choosing noun as the attachment site
yields an accuracy of 58.96% [6].

The combination of information from corpora and WordNet used in the algo-
rithm also takes care of the sparse data. We believe that this kind of combination
of information helps in disambiguating the attachment even when there is a nar-
row difference in the noun and verb attachment scores. In Table 1 below, we
present the number and percentage of quadruplets identified and the accuracy
of the algorithm at each stage of the algorithm for the three test data sets I,
II and III described in Section 3. To make certain that our test data sets II

Data set I (Ratnaparkhi) II (WSJ) III (Merlo et al)
Size 2998 1209 4583

Stage Identified Accuracy Identified Accuracy Identified Accuracy
(%) (%) (%) (%) (%) (%)

’of ’(noun) 29.45 95.1 42.34 99.21 31.96 99.86

Sup Quad 2.33 85.7 28.61 87.57 45.86 89.72

Sup Trip 18.21 84.2 14.39 79.31 8.42 83.28

UnSup Trip 2.33 81.41 2.56 61.29 3.09 64.08

Sup Pair 36.45 82.43 5.54 67.16 5.73 82.5

Unsup Pair 3.73 72.32 2.73 60.60 1.57 72.22

Default(B, C) 7.47 65.1 3.80 34.78 2.68 54.47

Table 1. Single PP Attachment : Stage-wise Results

and III are not overlapping with the training data set, we did not consider the
supervised quadruplets identified by the algorithm for calculating the precision
for these two data sets. Hence, the precision reported for data set II is for 863
sentences and that for data set III is for 2481 sentences. The precision increases
by about 2-3% when supervised quadruplets are considered.

Table 2 below gives overall precision for the three data sets with and without
default stage of level B and C. As anticipated, the precision increases with lower
recall.

The average precision over all three data sets is 86.68 % for 100% recall and
removing the default stages B and C from the algorithm increases the average
precision to 88.82% with 93.9% recall. Though the precision for the data set III



Data set I Data set II Data set III

Accuracy Precision Recall Precision Recall Precision Recall

Without Default 86.32% 92% 89.35% 94.66% 90.79% 95.04%

With Default 84.6% 100% 86.44% 100% 88.99% 100%

Table 2. Single PP Attachment : Overall Results

is surprisingly high, the precision for the data set I did not surpass the human
accuracy of 88.2% reported by Ratnaparkhi et al [7].

6 Extension to Multiple PP Attachments

In this section, we discuss the extension of the proposed single PP attachment
algorithm to handle the multiple PP attachment ambiguity. We assume that the
decision of the attachment site of one PP in a sentence is independent of the
attachment sites of the other PPs in the same sentence. This assumption allows
us to use the single PP training data for multiple PP attachment problem. It also
enhances the performance of the algorithm by reducing the possible attachment
sites for the PPs. Before discussing the algorithm, we present the rules used for
reducing possible attachment sites of PPs.

We first resolve the ambiguity among multiple verbs by using clause boundary
information, since a preposition can attach only to elements within a clause. The
clause boundary information is extracted from the phrase structure tree given by
Collins parser. The accuracy of clause boundary identification of Collins parser is
reported to be 85% ([3]). Given a test sentence, we identify the clause in which
a preposition falls and rule out the other verbs as possible attachment sites,
reducing the possibility of multiple verbs as attachment sites. For instance, the
clause boundaries for the example sentence of Section 2 are

ACET [will shortly be opening a new office in the east end of London [to
serve clients in North and East London]]
The second PP ’in North and East London’ falls in the clause headed by the
verb ’serve’, which rules out the verb ’open’ as a possible attachment site.

The preposition may still have a verb and multiple nouns as its attachment
sites within the same clause. Though we assume independence of PP attach-
ments, we make use of linguistic knowledge to rule out certain attachment sites.
We apply a rule which does not allow edges corresponding to the attachments
to cross. For instance, in a structure of the type

Va Na P1 N1 P2 N2

if (P1, N1) attaches to Va then (P2, N2) cannot attach to Na. In the above ex-
ample, if the PP (P1, N1) ’in the east end’ attaches to ’open’, then the PP ’of
London’ can not attach to ’office’. Though the above rule further reduces the pos-
sible attachment sites, the ambiguity in the attachment sites of the preposition
still persists.

As a first step towards using the single PP algorithm, we construct all possible
quadruplets using the verb and available nouns with this PP. For instance, if the



possible attachment sites of (P2, N2) are Va, Na and N1, then the quadruplets
constructed are (Va, Na, P2, N2), (Va, N1, P2, N2).

Given any multiple PP sentence, the attachment site of the first preposi-
tion is decided based on the algorithm described in Section 5. For each of the
subsequent PPs, we first run the single PP attachment algorithm for all the con-
structed quadruplets. If all the quadruplets give verb as its attachment, adverbial
attachment is assigned for the PP. If the attachments given by quadruplets are
contradictory, we compute λScore for each of the quadruplet, defined as

λScore(V, N, P1, N1) = β E1 + (1 − β) E2

where β is an appropriately selected normalizing constant between 0 and 1, E1

is FinalV Scorei for the quadruplet (V, N, P1, N1) and E2 is FinalNScorei for
the quadruplet (V, N, P1, N1) defined in (7) and (8), where i is sup or unsup,
as the case may be. We pick the quadruplet with highest λScore and the PP
attachment given by this quadruplet is assigned to the PP.

The above approach was tested using data set IV (Section 3) of 1223 sentences
from WSJ, extracted from Penn Tree Bank. All sentences have at least two PPs
and 43% of them have three PPs. As mentioned in Section 3, we considered
data set III [5] of tuples extracted from 4583 sentences consisting of two or three
PPs. The noun belonging to the last PP in the sentence is not available in this
test data. Hence only those tuples with two or more PPs could be used to test
the accuracy of the attachment of first PP. Similarly, to test for accuracy of the
attachment of the second PP, we had to use tuples from the sentences with three
PPs. Since all the tuples had a maximum of three PPs only, the accuracy of our
algorithm for the attachment of the third PP could not be calculated for data
set III. Table 3 presents the performance of our algorithm on data sets IV and
III.. Note that analogous to the single PP case, the recall including the default

Data set IV (WSJ) III (Merlo et al)

PP1 PP2 PP3 PP1 PP2 PP3

Total no. of PPs 1223 1223 523 2581 430 –

Correct 1058 880 303 2208 316 -

Precision 86.5% 71.9% 58% 88.99% 73.4% –

Table 3. Multiple PP Attachment Results

is 100% here. The accuracy of PP1 is similar to the accuracy reported for the
single PP attachment (Tables 1 and 2). For the first and the second PP of the
test data III, the algorithm achieved 88.99% and 73.4% accuracy respectively.
The corresponding accuracies using the algorithm by Merlo et al [5] are 84.3%
and 69.6% respectively. The reported accuracy for the third PP is 43.6% and
we believe that with the availability of the noun in the third PP, our algorithm
would have achieved higher accuracy.



7 Conclusions

In this work, we have looked at the problems of both single PP attachment
as well as multiple PP attachment. We combine both supervised and unsuper-
vised methods along with the WordNet information in our algorithm. Our use
of WordNet information significantly differs from the earlier approaches using
WordNet. The training data from annotated corpora contains quadruplets with
PP attachment information, whereas in case of unsupervised training, the data
consists of co-occurrence information about the PP and its attachment sites. The
training data sets have been extracted from WSJ as well as BNC. Two existing
test data sets ([7], [5]) and a third data set extracted from WSJ were used for
evaluating the accuracy of the algorithm. The precision of 86.32% with a recall
of 92% was achieved on Ratnaparkhi’s dataset [7] consisting of 2998 quadruplets.
We achieved the average precision of 86.68% with 100% recall and the average
of precision of 88.82% with 93.9% recall on the three data sets.

Multiple PP attachment problem was reduced to a problem of stepwise at-
tachment of PPs from left to right within a clause. As a result, the single PP
attachment algorithm can be extended to disambiguate each PP attachment
site. Based on the attachment decisions for the earlier PPs, certain later PP
attachments are ruled out because of non-crossing of attachments. On the test
data consisting of 1223 sentences extracted from WSJ the algorithm achieved
the precision of 86.5% for the first PP and 71.9% and 58% respectively for sub-
sequent PPs with 100% recall. The algorithm was also tested on the data set
used in [5] and showed improvement over the accuracy by the earlier algorithm.
Annotated corpus plays an important role in reaching these levels of accuracy
and a larger annotated corpus would help in improving this accuracy.

In conclusion, the algorithm shows significant improvement over earlier ap-
proaches to single and multiple PP attachment problem. Using thesaurus in
place of WordNet is likely to improve the performance further since a thesaurus
typically gives larger number of synonyms and does not provide subdivision of
senses as fine as WordNet. This possibility is currently being investigated.

While considering second and subsequent PPs in a multiple PP sentence, the
quadruplets that are formed do not have information that the noun at a possible
attachment site may or may not be an object of the verb. For example, consider
the sentence He put the book on flowers on table. The PP ’on flowers’ attaches to
the noun ’book’ where as ’on the table’ attaches to the verb ’put’. With the verb
like ’put’, both prepositions ’on’ are highly likely to be attached to ’put’ because
of the mandatory requirement of the verb frame. Thus the availability of verb
frame information will make the task of PP attachment easier. Incorporation of
such syntactic information would require a change in the algorithm and may be
attempted in the future. In the presence of coordinate structure of two nouns
or nous or verbs, our algorithm uses only the last element (noun or verb) in the
coordinated structure. Handling of coordinate structure will also be pursued in
future.



Appendix : WordNet Scores for Pairs

The initial scores for verb and noun based on annotated corpus are VsupN,N1
(V, P1),

NsupV,N1
(N, P1) and those using un-annotated corpus are Vunsup(V, P1) and

Nunsup(N, P1). WordNet scores for pairs are calculated analogous to those in
(5) and (6), given by

WVi(V, P1) =







∑

vi∈CV

∑

ni∈CN

∑

n1i∈CN1
)

g(Vsupni,n1i
(vi,P1))

|CV |∗|CN1
|∗|CN | if i = sup

∑

vi∈CV

g(Vunsup(vi,P1))
|CV | if i = unsup

WNi(N, P1) =







∑

vi∈CV

∑

ni∈CN

∑

n1i∈CN1

g(Nsupvi,n1i
(ni,P1))

|CN |∗|CN1
|∗|CN | if i = sup

∑

ni∈CN

g(Nunsup(ni,P1))
|CN | if i = unsup.

Similar to final triplet scores in (7) and (8), the final pair scores are

FinalV Scorei(V, P1) = α WVi(V, P1) + (1 − α) Vi(V, P1)

FinalNScorei(N, P1) = α WNi(N, P1) + (1 − α) Ni(N, P1)
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