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Figure 1: Physics of balls with Transform Feedback. Multi Light Shadows with Layered Rendering. Teapot rendered with spline subdivision.
Geometry generation with Geometry Shader.

Abstract

The Direct3D10/SM4.0 system [Blythe 2006] is the4th genera-
tion programmable graphics processing units (GPUs) architecture.
The new pipeline introduces significant additions and changes to
prior generation pipeline. We explore these new features and ex-
periment to judge their performance. The main facilities introduced
that we ponder upon are, Unified Architecture providing common
features set for all programmable stages, Geometry Shader which is
a new programmable stage capable of generating additional primi-
tives, Stream output with which primitive data can be streamed to
memory, Array textures and primitive level redirection to different
frame buffers through layered rendering. We analyze our imple-
mentations and with experimentation, we draw conclusions on their
efficient usage and provide some of their limitations.

Keywords: Shader Model 4.0, Direct3D 10 System, Pro-
grammable Graphics Hardware

1 Introduction

In real-time 3D computer graphics, arendering pipelineis meant
to accept certain representation of a 3D scene as input and pro-
duce a 2D raster image as output which can be shown on a dis-
play device. The variouspipeline stagesare mentioned in Figure 2.
Earlier, these stages were implemented as fixed functions onhard-
ware for graphics acceleration. Later, some of these stageswere
made programmable instead of being fixed function namely pro-
cessing of vertices and fragment. Since all vertices and fragments
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can be thought of as independent, they can be processed parallely
on the graphics processing unit. Small programs could be writ-
ten which processed all vertices (or fragments) parallely and were
calledshadersand the programming model was called theshader
model. The history of graphics hardware and shader model is dis-
cussed in Section 1.1.

The Shader Model 4.0 makes giant leaps considering a version
change, as it involves significant changes to the rendering ure-
pipeline. Earlier vertex shaders and fragment shader, being at dif-
ferent stages, had different requirements. Fragments shaders had
quick access to textures and vertex shaders either didn’t have or had
limited access to textures. Shader Model 4.0 keeps all the shaders
at the same level calling it a unified architecture, because of which
even vertex shader (and geometry shader) have fast access totex-
tures. This feature can be used to draw objects whose geometry
information is stored as images, a very good example being terrain
rendering in which elevation map is stored as images. We discuss
usage of unified architecture in Section 2.

The new model introduces a new programmable stage called the
geometry shaderwhich gives the capability of generating more ver-
tices and primitives. This saves the CPU to GPU bandwidth as less
3D data can be sent using programming tricks to the pipeline and
they can be generated on the GPU itself. We stress test the capa-
bilities and verify the importance of this new programmablestage
(Section 3). We develop techniques and applications involving ge-
ometry shader and our analysis will be helpful in clever usage of
geometry shader.

In past, game developers complained about slow state changebe-
cause of which they avoided using multiple textures. Instead they
mapped textures on various objects with the help of a single texture,
texture atlas [Nvidia 2004]. Shader Model 4.0 introduces array tex-
tures and 3D textures. Various images can be loaded as layersin ar-
ray texture (or as a 3D texture) and the shader can choose between
these layers as the whole array texture is referenced by a single tex-
ture ID. Terrain rendering finds itself as a good applicationof array
textures which we explain in detail in Section 4.

Along with the introduction of array textures, another new attrac-
tive feature is layered rendering which seems an extension of older
model’s one of the feature,MRT (Multiple Rendering Targets).
Where with MRT, fragments in the fragment shader can be redi-



Figure 2: Traditional rendering pipeline

rected to differentcolor attachmentsof the frame buffer; withlay-
ered rendering, it is possible in the geometry shader to redirect
primitives to different layers of an array texture which areattached
to the frame buffer object. Independent rasterization for all the dif-
ferent layers will be carried out. We find that multi-perspective
rendering and multiple light shadows are good applicationsof lay-
ered rendering and are discussed in Section 5. Real-time Cube-map
rendering is good application which has been discussed in [Blythe
2006].

The new rendering pipeline also features streaming data outin the
middle of the pipeline to the memory. This is termed asstream
outputby the Direct3D 10 system andtransform feedbackby the
OpenGL 2.1 system. This gives the facility of not going through
the whole pipeline to process stream data which is not to be ren-
dered. Objects can be rendered as well as some information can
be recorded in the same pipeline. We implemented simple physics
transformations and deformable models which harnesses thetrans-
form feedback’s facilities; they are described in Section 6.

A small overview of the features which came along with shader
model 4.0 as enumerated below:

1. Unified Architecture : A single point computation unit which
is responsible for the variety of computations going on the
GPU (Section 2).

2. Integer Operations : Integer (arithmetic, bitwise and conver-
sion) instructions (32-bit) are now supported.

3. Goemetry Shader : A new shader unit in the pipeline which
takes a primitive (point, line or triangle) as input and produces
zeroor more primitives (Section 3).

4. Array Textures : This feature of Shader Model 4.0 brings
along two new texture storage units namelyone- and two-
dimensional array textureswhich essentially mean a collec-
tion of one- and two-dimensional textures (Section 4).

5. Layered Rendering : With the introduction of Geometry
Shader user can render to one of several different layers of
cube map textures, three-dimensional textures, plus one- and
two-dimensional texture arrays (Section 5).

6. Stream Output : This new mode to the graphics pipeline
records vertex attributed of the primitives processed in the ge-
ometry shader or post vertex shader in case of fixed pipeline
or absence of geometry shader (Section 6).

1.1 Programmable GPUs : A Brief History

In history, 3D graphics goes as early as the days of Evans & Suther-
land, founded by Ivan Sutherland and David Evans in 1968. Some
of their work involves projects for military and large industrial firms
for training and simulation, digital projection environments like
planetariums etc. SGI was founded by one of the students of Ivan
Sutherland, Jim Clark and Abbey Silverstone in 1981. In 1982, one
of the first products from SGI include IRIS 1000 (Integrated Raster
Imaging System). SGI also came up with an API, ’IRIS Graphics
Language’ (IRIS GL), which provided access to their high perfor-
mance 3D graphics subsystems. Later, IRIS GL became OpenGL
which meant for the first time, fast, efficient, cross-platform graph-
ics programs could be written.

Commodity based graphics hardware involving 3D functions were
first developed by Matrox, Creative, S3 and ATI in 1995. Graphics
hardware production for consumer PC market grew with the intro-
duction of Voodoo Graphics PCI by 3Dfx in 1996. 3dfx also pro-
vided a graphics API called GLIDE for their VooDoo cards, which
was kept at a much lower level to the hardware. This was difficult
for game programmers but they were able to harness the full power
of voodoo cards. The first voodoo card was capable of only ras-
terization and pixel processing. Later NVIDIA developed the first
card namedGeForce 256 (SDR)in Oct 1999. This card was capa-
ble of fixed function hardware based transformation of vertices and
lighting with the Direct3D7 and OpenGL1.2 API.

The GeForce 3, was the first programmable GPU, allowing game
developers to do much more (2001). This breakthrough came asDi-
rect3D8 introduced the first widely-used family of shaders:Shader
Model 1.1. ATI came up with Radeon 8500 supporting Shader
Model 1.4. The shader model at this stage involved a few of assem-
bly intructions in the shader programs. Also branching and looping
were not supported at all. The next version, Shader Model 2.0(Di-
rect3D9), involved improvement in terms of shader code length.
GeForceFX series and Radeon 9700 brought it to the consumersin
2003.

In 2005, we had the GeForce 6 and 7 series, which support Di-
rect3D9c and Shader Model 3.0. X800 supported Direct3D9c but
only Shader Model 2.0b. Shader Model 3.0 also saw the dawn of
high level shading languages. Direct3D9c named its shadinglan-
guage HLSL and OpenGL2.0 called it GLSL1.1. Shader Model
3.0 contained several improvements: improved floating point pre-
cision, more code length, support of dynamic branching but with a
performance hit, unrolled looping and vertex texture lookup. Due to
such enhancements, Shader Model 3.0 remained the most used by
game developers, graphics researchers and GPGPU programmers.
NVIDIA released its own shading language Cg in 2003, which was
closer to HLSL, and was apparently used widely.

By the end of year 2006, NVIDIA released the first card, 8800GTX,
of their G80 family. This supported Shader Model 4.0 introduced
by Direct3D10 System. OpenGL 2.1 with GLSL1.20 got intro-
duced in November 2006 which fully supported the new features
of Shader Model 4.0. AMD is expected to release its R600 series
card, Radeon 2900XT, in May 2007. The improvements in Shader
Model 4.0 are significant and tend to solve most issues game devel-
opers raise.

CUDATM (Compute Unified Device Architecture) which is a fun-
damentally new computing architecture, provides an accessto the



Figure 3: The Unified Architecture

tremendous processing power of NVIDIA GPUs through a revolu-
tionary new programming interface. The core technology of GPUs
which isparallel data processingis now exploited with GPUs en-
tering the space of massively parallel processing. The GPUsnow
act as a co-processor to the CPU, offloading major part of process-
ing.

2 Unified Shader Architecture

The Shader Model 4.0 GPUs use the same processor core to imple-
ment vertex, geometry and fragment processing. Seperate proces-
sors with different capabilities were used for different stages of the
earlier GPUs. The previous model with seperate processors for ver-
tex and pixel units (Figure 4) was prone to under-performance. The
Shader Model 4.0 GPUs dynamically allocate the available process-
ing resources to vertex, geometry and pixel units as demanded by
the load. This greatly improves the resource utilization.

The main advantages of Unified Architecture are

1. Dynamic load balancing due to the on-demand scheduling of
processes

2. Higher power to vertex processor with introduction of full
floating point precision

3. High performance due to unified compute and texture access.

An important advantage of unified architecture is uniform access to
the texture memory for all shaders. The vertex textures supported
on Shader Model 3.0 were slow [Asirvatham and Hoppe 2005]. ATI
cards never supported vertex textures. This allows the use of tex-
tures to store regular geometry and their access in vertex and geom-
etry shaders. We compare rendering a grid of1000 × 1000 points
using vertex texture to fetch the vertices. The FPS on a Nvidia
6600 GT was 14, and on a Nvidia 7950GX2 was 32 fps. In contrast
GeForce 8800 GTX gave an 270 fps. This together with geometry
generation on the Geommetry Shader (Section 3.1) makes it pos-
sible to render huge geometry completely on the shaders. Some
of the applications which can take direct advantage of the above
scenario are rendering of Geometry Images and rendering of huge
terrains with dynamic LOD. Thus, unified shaders allow us to store
geometry in form of textures and efficiently access the same from
vertex shader.

These features make it possible for the whole geometry to be stored
in and rendered from the the GPU memory. This can increase the
rendering speed especially if the geometry is quite regular. Terrains
are good examples of such geometry when represented using regu-
lar heightmaps. The 2D array of heights can be stored in textures
on the GPU and accessed by the shaders quickly for rendering.

Figure 4: Inefficient usage of hardware with previous architecture.
Schematic representation of dynamic load balancing with Unified
Architecture

Figure 5: Rendering Geometry Images with vertex textures

Gu et al introduced Geometry Images [Gu et al. 2002] which cap-
tures geometry as a simple 2D array of quantized points. As op-
posed to remeshing an irregular mesh into one with a semi-regular
connectivity, they proposed a technique to remesh an arbitrary sur-
face onto a completely regular structure called a geometry image.
With the introduction of faster (common to vertex, geometryand
fragment shader) texture fetch in the shaders a geometry image can
be rendered with high efficiency. For a geometry image of Bunny
with 257×257 vertices the fps obtained on a Nvidia 7950GX2 was
713 as compared to that on 8800 GTX was 2281 (Figure 5).

Code Snippet from GLSL geometry shader for Geometry Image
rendering.

...

// pos *= 5.0 corresponds to the scaling
// factor as normalized vertices are stored in
// the Geometry Image.

// tex is the texture holding the geometry
// image.

pos.xyz = texture2DRect( tex, texcoord.xy ).rgb;
pos.xyz *= 5.0;
pos.w = 1.0;
gl_Position = gl_ModelViewProjectionMatrix * pos;
EmitVertex();

texcoord.x += 1.0;
pos.xyz = texture2DRect( tex, texcoord.xy ).rgb;
pos.xyz *= 5.0;
pos.w = 1.0;
gl_Position = gl_ModelViewProjectionMatrix * pos;
EmitVertex();

texcoord.x -= 1.0;
texcoord.y += 1.0;



pos.xyz = texture2DRect( tex, texcoord.xy ).rgb;
pos.xyz *= 5.0;
pos.w = 1.0;
gl_Position = gl_ModelViewProjectionMatrix * pos;
EmitVertex();

texcoord.x += 1.0;
pos.xyz = texture2DRect( tex, texcoord.xy ).rgb;
pos.xyz *= 5.0;
pos.w = 1.0;
gl_Position = gl_ModelViewProjectionMatrix * pos;
EmitVertex();

EndPrimitive();
...

The above code corresponds to expansion of a point from geometry
image into a2 × 2 grid of triangle to build the mesh.

Following 3 tables show the FPS numbers under various conditions.
1

Geometry being sent from CPU in form of Points
2

Geometry being sent from CPU in form of Triangles ( TRIANGLESTRIP)
3

Dummy Indices stored in VBO, expanded in shader and heights fetched from vertex texture(LUMINANCE)
4

Dummy Indices stored in VBO, expanded as triangles in Geometry Shader and heights fetched from texture

Nvidia 6600 GT
Grid Size CPU(Pts)1 CPU(Tri) 2 VBO+VT(Pts)3

256 × 256 259 155 200
512 × 512 65 39 80

1024 × 1024 17 10 23
2048 × 2048 5 3 6

Nvidia 7950 GX2
Grid Size CPU(Pts)1 CPU(Tri) 2 VBO+VT(Pts)3

256 × 256 370 180 740
512 × 512 94 50 215

1024 × 1024 24 13 59
2048 × 2048 6 3 15

Nvidia 8800 GTX
Grid Size CPU(Pt)1 CPU(Tr)2 VT(Pt)3 VT(Tr)4

256 × 256 705 374 1851 731
512 × 512 177 98 905 284

1024 × 1024 44 24 261 90
2048 × 2048 13 7 68 27

Following table contains the FPS numbers for rendering of Geom-
etry Images. We have used the freely available Geometry Image of
the Bunny available at Hoppe’s web site.
1

Rendering Points
2

Rendering Triangles with help of Geometry generation

6600 GT1 7950 GX21 8800 GTX1 8800 GTX2

271 713 2281 976

3 Geometry Shader

Geometry Shader is the most notable new feature of Shader Model
4.0. This defines a new shader type which runs on the Graphics
Processing Unit. Geometry shaders are invoked after vertices are
processed by vertex shader, but prior to color clamping, flatshad-
ing and clipping (Figure 6). The input to the Geometry Shader
is a single primitive (point, line, triangle) and other attributes like
texture coordinates, color, normal, etc. The output is a list of primi-
tives, whose number, type, and attributes need not match with those
of the input primitives. The Geometry Shader can use all input
information and data stored in textures to generate its output. It
can, therefore, discard the geometry in the pipeline or insert new

Figure 6: The Shader Model 4.0 Graphics Pipeline

geometry into it. The new and potentially disconnected primitives
generated by the geometry shader are treated like other primitives
coming directly from the application (OpenGL/DirectX).

Input/Output to the geometry shader and maximum number of ver-
tices emitted per call of geometry shader can be mentioned inthe
following way from an OpenGL code.

...
//Informing the Geometry Shader that there will be 4
//vertices emitted per primitive

glProgramParameteriEXT ( shader,
GL_GEOMETRY_VERTICES_OUT_EXT, 4 );

//Informing the Geometry Shader that the input type to
//GS will be Points

glProgramParameteriEXT ( shader,
GL_GEOMETRY_INPUT_TYPE_EXT, GL_POINTS );

//Informing the Geometry Shader that the Output type to
//GS will be Triangle Strips

glProgramParameteriEXT ( shader,
GL_GEOMETRY_OUTPUT_TYPE_EXT, GL_TRIANGLE_STRIP );
...

Geometry shader can also access the neighbouring vertices
of a primitive. The above scenario called for introduc-
tion of a category of primitives viz. lines with ad-
jacency (LINESADJACENCY EXT), line strips with adja-
cency (LINESTRIPADJACENCY EXT), triangles with adja-
cency (TRIANGLESADJACENCY EXT), and triangle strips with
adjacency (TRIANGLESTRIPADJACENCY EXT). These prim-
itives take in more than the usual number of vertices; a line with
adjacency requires 4 vertices to describe its end points andtheir
neighbours and a triangle with adjacency needs 6. Thus, at the cost
of extra geometry transfer, one can access the important informa-
tion of the neighbourhood of a primitive in the geometry shader.
Silhouette calculation of 3D models requires neighbouringinfor-
mation for the calculation of gradients. Thus, one can use TRI-
ANGLES ADJACENCY EXT primitives in order to provide the
neighbourhood vertices to be processed in the geometry shader. Ge-
ometry shader can then access a couple of extra vertices and find the



required information (normals and tangents).

3.1 Geometry Generation

We describe an example of genertion and expanding of geometry
by the Geometry Shader in this section by rendering terrainsof var-
ious size with diffrent amount of geometry being sent and rest of it
being generated on the Geometry Shader. With the driver version
1.0-9755 for Linux the maximum amount of geometry which can
be generated is capped at 128 vertices per Geometry Shader execu-
tion..

Grid Size Geom. Sent1 Geom. Gen.2 FPS
512 × 512 512 × 512 2 × 2 203
512 × 512 256 × 256 4 × 4 91
512 × 512 128 × 128 8 × 8 21

1024 × 1024 1024 × 1024 2 × 2 51
1024 × 1024 512 × 512 4 × 4 23
1024 × 1024 256 × 256 8 × 8 6

Grid Size Geom. in VBO3 Geom. Gen.2 FPS
512 × 512 512 × 512 2 × 2 213
512 × 512 256 × 256 4 × 4 91
512 × 512 128 × 128 8 × 8 21

1024 × 1024 1024 × 1024 2 × 2 60
1024 × 1024 512 × 512 4 × 4 23
1024 × 1024 256 × 256 8 × 8 6

1
Amount of Geometry being sent from CPU (as Points)

2
Amount of Geometry generated in Geometry Shader to form the Grid

3
Amount of Geometry stored in VBO

Shader Model 4 Terrain Systemis a completely GPU based terrain
system where most of processing is done on the geometry shader
with terrain geometry being accesed from the textures (2D Array
Textures), tiles (grid of triangles) generated and expanded with
some information from small VBOs and textures containing geom-
etry and stitching of these tiles. The amount of geometry which can
be generated on Geometry Shader is limited. Currently on a Nvidia
8800GTX we are able to expand a vertex to 128 vertices. With
this constraint we render a257 × 257 tile (with an extra row and
coloumn for stitching at top and right borders) with variousVBO
sizes of32 × 32, 64 × 64 etc. Further these points from the VBOs
are expanded as grids to fill in for the missing near by points.

With the introduction of Geometry Shader one can send in dummy
points which can be further expanded as a grid of triangles inthe
geometry shader. A novel approach for two level culling (Sec-
tion 3.2) was used in the Terrain System which performs a sec-
ond level culling algorithm on the incoming points to the vertex
shader and culls the vertices which would lie outside the frustum
after going through a Modelview and Projection. Thus for each
tile we would perform a tile-level culling on the CPU and set a
flag for the tiles which are intersecting the frustum. Later in the
vertex shader we receive am × n grid of points for a tile of size
M × N(m < M ; n < N), for each of these incoming points we
pass them through the second level culling test, thus avoiding a lot
of expansion and rendering of extra geometry.

3.2 Two Level Culling

Geometry deletion enables culling of geometry in the geometry
shader. The tiles in the terrain system undergo the first level of
culling on the CPU where the CPU culls large tiles and marks the
ones which intersect the frustum. The marked tiles are then tested
for further culling on the GPU in vertex shader. For each tileof
size256×256 to be rendered (Figure 7), CPU sends a VBO of size

Figure 7: Tiles and Tilelets involved in first and second level of
culling
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Figure 8: Two level culling performance against generating and
rendering the extra geometry left out by the CPU culling

m × n wherem < 256, n < 256 ( in case of Nvidia 8800GTX,
32 < m < 256, 32 < n < 256, where maximum geometry gener-
ation (8 × 8) happens withm = 32, n = 32). Each of these points
in the grid ofm × n are then tested in the vertex shader if they lie
inside or outside the frustum and accordingly labelled as culled or
not culled. We save the geometry generation and rendering load for
these points by culling them in vertex shader. The culling onthe
vertex shader is performed by mapping these grid points to screen
space and testing them against a range. The main advantage of
the technique is that we render exact amount of geometry required,
thus an exact culling is performed. Secondly we can reduce the
CPU load by increasing the size of tiles.

4 Array Textures

One of the extensions introduced with Shader Model 4.0 is
EXT texturearray. This extensions introduces the idea of one-
and two-dimensional array textures. A Texture array is a collec-
tion of one- and two-dimensional images of identical size and for-
mat, organized in layers.TexImage2Dis used to specify an one-
dimensional array texture, where theheightspecify the number of
layers for the array texture. SimilarlyTexImage3Dis used to declare
a two-dimensional array texture, where thedepthspecify the num-
ber of layers of 2D textures. Maximum number of layers which can



be attached together can be queried using GetIntegerv with pname
as MAX ARRAY TEXTURE LAYERS EXT. On a nVIDIA 8800
GTX the maximum number of layers possible is 512.

2D-Array Textures are declared as follows :

//Generate an opengl texture
glGenTextures(1,&texid);
glBindTexture(GL_TEXTURE_2D_ARRAY_EXT,texid);

//Setting up the parameters, note the ’R’ space as well
glTexParameteri( GL_TEXTURE_2D_ARRAY_EXT,

GL_TEXTURE_MIN_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D_ARRAY_EXT,

GL_TEXTURE_MAG_FILTER, GL_NEAREST );
glTexParameteri( GL_TEXTURE_2D_ARRAY_EXT,

GL_TEXTURE_WRAP_S, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D_ARRAY_EXT,

GL_TEXTURE_WRAP_T, GL_CLAMP_TO_EDGE );
glTexParameteri( GL_TEXTURE_2D_ARRAY_EXT,

GL_TEXTURE_WRAP_R, GL_CLAMP_TO_EDGE );

//Create space for the array texture
glTexImage3D( GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA, width,

height, depth, 0, GL_RGBA, GL_UNSIGNED_BYTE, NULL);

//Put individual 2D image data to each layer
glTexSubImage3D( GL_TEXTURE_2D_ARRAY_EXT, 0, 0, 0, layer,

width, height, 1, GL_RGBA, GL_UNSIGNED_BYTE,
image_data_pointer);

Texture array can be used in a shader as :

//declaration of sampler
uniform sampler2DArray tex;
...
//fetching color from layer texcoord.z from the 2D
//location texcoord.xy from sampler terraintex
color = texture2DArray ( terraintex, texcoord ).rgba;
...

Currently, this extension is not supported on the fixed-function frag-
ment processing. Array textures can be accessed only using the
programmable shaders. A layer is selected by specifying thet or r
texture coordinate for 1D and 2D array textures, respectively. Fur-
ther it is accessed as though it were a one- or two-dimensional tex-
ture. A 2D array texture sounds similar to a 3D texture. Thereare
few differences between 2D array textures and 3D textures. In case
of 2D array textures, texture lookups do not filter between layers,
though the same can be achieved in the shaders, where as in case
of 3D textures various filtering options are provided. Rendering to
different layers or 2D textures can only be achieved by binding a
2D array texture to a frame buffer object.

Texture arrays are ideal to store data which is independent at each
layers, for e.g. terrain data. Terrain can be divided into blocks of
desired size(1024 × 1024, 2048 × 2048) and these blocks can be
stored as various layers in a 2D array texture. An array texture is
accessed as a single unit in a programmable shader, using a single
coordinate vector. A terrain extending overm × n blocks can be
stored as an array texture withmn layers, giving the user a sin-
gle point access to the whole or currently cached terrain. Several
computations like physics calculation (Section 6.1) need to have
access to whole of the terrain. With array textures any part of the
terrain can be accessed by specifying the layer withr texture co-
ordinate in case of a 2D array textures, thus providing the ease of
selecting textures in the programmable shaders rather thanan in-
tervention from CPU regarding the binding of correct texture. The
same was possible with 3D textures, but the array textures can ad-
ditionaly be rendered to by binding them to a frame buffer object
(EXT framebufferobject). Along with physics, a dynamic terrain
could itself undergo deformation on the fly (may be an impact from
the ball can produce craters). A continously changing terrain which
is stored as an array texture(s) can be evolved by rendering to these
layers [Bhattacharjee et al. 2007].

Figure 9: Multiple Shadows in 2 Pass.

5 Layered Rendering

The main use of 2D array texture comes with Layered Rendering.
With an array texture bound to a framebuffer object we can route
geometry from geometry shader to different layers. Thus rendering
different scenes/views in a single pass becomes possible. Multiple
Render Targets were introduced in order to render to more than one
framebuffers at Fragment Shader level. With MRT, we can produce
more than one output at the pixel level. We can say Layered Ren-
dering provides the freedom of doing the same thing at geometry
level and each layer can have independent rasterization.

In case of dynamic Environment Mapping, i.e., when the Environ-
ment Map is not static and changes with camera motion, we can
produce all the six faces of the map in a single pass thus giving a
2-pass algorithm for Cube-Map rendering. A couple of more appli-
cations of Layered Rendering which are also described beloware,
two pass motion blur and 2 pass multiple lights dynamic shadows.
To bind the layers of an array texture to a frame buffer object, fol-
lowing code can be used.

...
//Generate Texture to hold the 2D Array Texture
glGenTextures( 1, &colorTex );
glBindTexture( GL_TEXTURE_2D_ARRAY_EXT, colorTex );

//Create a 2D array texture and set other properties
glTexImage3D ( GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA8, 256,
256, 2, 0, GL_RGBA, GL_FLOAT, 0 );

...
//Generate an FBO
glGenFramebuffersEXT( 1, &fbo );
glBindFramebufferEXT ( GL_FRAMEBUFFER_EXT, fbo );
glBindTexture ( GL_TEXTURE_2D_ARRAY_EXT, 0 );

//Attach the 3D texture which contains 2 Layers
//to the FBO
glFramebufferTextureEXT ( GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHMENT0_EXT, colorTex, 0 );

...

5.1 Efficient Multiple Dynamic Light Shadows

We use Layered Rendering to compute all N shadow maps cor-
responding to N lights in a single pass. Earlier methods us-
ing the Shadow Maps needed N passes for computation of N
Depth/Shadow maps. Layered Rendering allows an application to
bind an entire complex texture to a framebuffer object, and render
primitives to arbitrary layers computed at run time. The layer to
render to is specified by writing to the in-built variablegl layer.

Pass 1 : Pass the corresponding view & projection matrices for each
light along with the common model matrix of the scene to the Ge-
ometry Shader. Each primitive is routed to N layers after multi-
plying with ith view and projection matrices corresponding toith



Light source and the common Model Matrix, and the Depth Map is
saved atith Layer of the array of 2D textures.

...
gl_Layer = lightid;
for (int ii = 0; ii < 3; ii++)
{

pos = gl_TextureMatrix[0] * gl_PositionIn[ii];

pos = gl_TextureMatrix[1] * pos;
gl_Position = gl_TextureMatrix[2] * pos;
EmitVertex();

}
EndPrimitive();
...

Thus, for each incoming triangle above code directs a copy ofthe
triangle to layer numberlightid by settinggl layer to lightid. Tex-
ture matrices are used here to store various modelview and projec-
tion matrices corresponding to different lights.

Pass 2 : Back-project each pixel in the pixel shader to each ofthe
light’s frustum comparing the depth of that particular pixel from
light’s points of view. We get a boolean answer on whether thepixel
in under shadow or not with respect to a particular light source.

...
for ( i = -p; i<=p ; i+=1.0 )

for ( j = -q; j<=q ; j+=1.0 )
{

//Light i
t.x = coordPos0.x + i/TSIZE;
t.y = coordPos0.y + j/TSIZE;
t.z = 0;
depth = texture2DArray( sampler, t ).r;
depthsqr = depth * depth;
m01 += depth / 25.0;
m02 += depthsqr / 25.0;

}
//sampler is the 2D array texture

//Above is performed for each light computing mean sigma
//of depth values over a window of pxq (soft-shadow
//using Variance Shadow Maps technique).
...
...
//Testing current pixel for shadow from Light i
if ( coordPos0.z > m01 && coordPos0.x <= 1.0 &&

coordPos0.x >= 0.0 && coordPos0.y <= 1.0 &&
coordPos0.y >= 0.0 )

{
sigma02 = m02 - ( m01 * m01 );
prob = sigma02 / ( sigma02 + ( (coordPos0.z - m01)

* (coordPos0.z - m01) ) );
color = color * prob;

}
...

With N comparisons we get N hard shadows corresponding to N
light sources in 2 passes. One can use any image based technique
to incorporate soft shadows, we have used Variance Shadow Maps
[Donnelly and Lauritzen 2006] for the same.

5.2 Motion Blur using Layered Rendering

Motion blur is simulated using the accumulation buffer. Accumula-
tion buffers provide a higher precision buffer as compared to frame
buffer for adding different images with varying weight. A blended
image comprised in accumulation buffer withn number of images
takesn + 1 passes. Thus, the number of passes is proportional to
the quality of blur needed.

As described with multiple shadow lighting, we can transform this
problem too into a two pass algorithm using the Layered Rendering.
This example shows how layers can be used to simulate motion blur
by rendering to different layers each having a different modelview
and optionally projection matrix suited for generating object space
blur (Figure 10). We usedm differentmodelview matricesin order

Figure 10: A rotating Teapot with motion blur.

to conveymprevious positions of the object to the geometry shader
using theTexture matricesavailable (32 on Nvidia 8800 GTX).

coord.xy = gl_TexCoord[0].xy;
for ( float i=1.0; i<NLAYERS; i+=1.0 )
{

coord.z = i;
color += (NLAYERS-i) * texture2DArray(samp,coord);

}
//Handling the current draw position here
coord.z = 0;
color += texture2DArray(samp,coord);

//Making Alpha 1
color.rgba /= color.a;

Above code shows how we put together the various framebuffers
stored in the first pass in a 2D array texture.

6 Transform Feedback

Stream-Output/Transform-Feedback is a new feature in the render-
ing pipeline to stream data out in the middle of the pipeline to the
memory (Figure 6). This gives the facility of not going through the
whole pipeline to process stream data of the object if it is not to be
rendered. Also, objects can be rendered and some information, on
the fly, can be recorded working in the same pipeline. With this, it
is possible to change the state of the object continuously, modifying
the original data on the GPU itself, without any interference from
the CPU.

6.1 Physics of point objects

Simple physics calculation of objects can be done with only the
previous physical state of the object. Instantaneous position and ve-
locity are enough for simple physics simulation of point objects. At
any moment, the position and velocity can be updated from thepre-
vious state and external forces giving them acceleration. Our GPU-
based terrain representation (Section 4) allows quick physics sim-
ulation on using the transform feedback feature of the new GPUs.
The CPU renders the objects for interaction, such as a bunch of
balls released over a terrain.

The CPU triggers a buffer object containing point primitives for
each ball with vertex as its initial position and texture coordinate
as its initial velocity. The vertex shader computes its nextposition
and velocity according to necessary acceleration (e.g. gravitation)
which is determined by its current position and velocity. Vertex
shader also accesses the terrain data stored as textures to fetch the
height at the object’s position. If the object’s height is less than
that of terrain’s, then there is a collision with the terrain. We reflect
the velocity vector of the object with respect to the terrain’s normal
at that position. The changed position and velocity is recorded in
another buffer object by the vertex shader to use in the next itera-
tion with the help of transform feedback; the rest of the pipeline is
discarded. By doing ping pong between the two buffer objects, the
positions and velocities get updated every frame. One of thebuffer



Figure 11: Screenshot from Shader Model 4 Terrain System.
Physics of balls interacting with the terrain

objects is then used to render an object at its location. We were
able to trigger up to 4000 balls (objects) to interact with the terrain,
at interactive framerates (21). The performance drops linearly with
the increase in number of objects (Graph 12).

glGenBuffersARB ( 1, &tfvbo[0] );
glBindBufferARB ( GL_ARRAY_BUFFER_ARB, tfvbo[0] );
glBufferDataARB ( GL_ARRAY_BUFFER_ARB,

count*4*sizeof(float), initdata, GL_STATIC_DRAW_ARB );

Above code demonstrates how an array buffer is declared for use of
storing the streamed output-ed data.

glActiveVaryingNV( shader, "varpos\0" );
glActiveVaryingNV( shader, "velocity\0" );

glLinkProgramARB(shader);

loc[0] = glGetVaryingLocationNV ( shader, "varpos\0" );
loc[1] = glGetVaryingLocationNV ( shader, "velocity\0" );

Getting a handle to variables which will be recorded during trans-
form feedback.

glBindBufferRangeNV ( GL_TRANSFORM_FEEDBACK_BUFFER_NV,
0, tfvbo[1-current_buffer], 0, 4*count*sizeof(float) );

...

...
glBeginTransformFeedbackNV( GL_LINES );

glEnableClientState( GL_VERTEX_ARRAY );
glEnableClientState( GL_TEXTURE_COORD_ARRAY );

glBindBufferARB( GL_ARRAY_BUFFER_ARB,
tfvbo[current_buffer] );

glVertexPointer( 4, GL_FLOAT, 0, NULL );
glBindBufferARB ( GL_ARRAY_BUFFER_ARB,

ttfvbo[current_buffer] );
glTexCoordPointer( 4, GL_FLOAT, 0, NULL );

glDrawArrays( GL_POINTS, 0, 1 );

glDisableClientState( GL_TEXTURE_COORD_ARRAY );
glDisableClientState( GL_VERTEX_ARRAY );

glEndTransformFeedbackNV();

Code snippet for rendering using VBOs with transform feedback
enabled. The input primitives are set as GLLINES which should
match the Geometry shader input set earlier.

...
varpos = gl_PositionIn[0];
velocity = gl_TexCoordIn[0][0];

varpos.x += 0.01;
velocity.x -= 0.01;
...

Geometry Shader code where the variables of our choice are
recorded with transform feedback.
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Figure 12: Time taken for computation increases linearly with lin-
ear increase in number of balls

The bottleneck of transfering updated physics state to the GPU
from CPU for physics is overcome by keeping CPU oblivious to
the physics state. Complete physics can be performed on the GPU
using the transform feedback, thus cutting on the precious CPU-
GPU bandwidth. A major advantage of performing physics using
the transform feedback on the GPU is that its highle scalable. We
have tested the physics for point objects for high numbers and the
results we get are very convincing. We find out that the computation
load grows linearly with the increase in balls (Figure 12).

We use array textures to represent the GPU cache of the terrain to
facilitate the interaction of objects with the terrain as mentioned in
Section 4. This makes it possible to use the layer ID of an individ-
ual block as a variable. Thus, an appropriate block of the cache can
be selected based on the external object’s(x, y) location. Conven-
tional textures are statically bound and their IDs cannot bevariable.
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