Exploiting the Shader Model 4.0 Architecture

Suryakant Patidar Shiben Bhattacharjée Jag Mohan Singh P. J. Narayanan
Center for Visual Information Technology, IlIT Hyderabad

Figure 1. Physics of balls with Transform Feedback. Multi Light Shaglavith Layered Rendering. Teapot rendered with spline isidion.
Geometry generation with Geometry Shader.

Abstract

The Direct3D10/SM4.0 system [Blythe 2006] is th& genera-
tion programmable graphics processing units (GPUs) achite.
The new pipeline introduces significant additions and ckang
prior generation pipeline. We explore these new featuresean
periment to judge their performance. The main facilitigsdaduced
that we ponder upon are, Unified Architecture providing camnm
features set for all programmable stages, Geometry Shdudehis
a new programmable stage capable of generating additioimai-p
tives, Stream output with which primitive data can be stredrto
memory, Array textures and primitive level redirection tiffetent
frame buffers through layered rendering. We analyze ourdémp
mentations and with experimentation, we draw conclusiortheir
efficient usage and provide some of their limitations.

Keywords: Shader Model 4.0, Direct3D 10 System, Pro-
grammable Graphics Hardware

1 Introduction

In real-time 3D computer graphics,randering pipelines meant
to accept certain representation of a 3D scene as input and pr

can be thought of as independent, they can be processetefparal
on the graphics processing unit. Small programs could bé wri
ten which processed all vertices (or fragments) parallely were
calledshadersand the programming model was called gsteader
model The history of graphics hardware and shader model is dis-
cussed in Section 1.1.

The Shader Model 4.0 makes giant leaps considering a version
change, as it involves significant changes to the renderieg u
pipeline. Earlier vertex shaders and fragment shaderghatinif-
ferent stages, had different requirements. Fragmentsestidwhd
quick access to textures and vertex shaders either didvet tighad
limited access to textures. Shader Model 4.0 keeps all thdesh

at the same level calling it a unified architecture, becafisehach
even vertex shader (and geometry shader) have fast acctess to
tures. This feature can be used to draw objects whose gepmetr
information is stored as images, a very good example bemngite
rendering in which elevation map is stored as images. Weudssc
usage of unified architecture in Section 2.

The new model introduces a new programmable stage called the
geometry shadewhich gives the capability of generating more ver-
tices and primitives. This saves the CPU to GPU bandwidtless |

3D data can be sent using programming tricks to the pipelirte a
they can be generated on the GPU itself. We stress test tlae cap

duce a 2D raster image as output which can be shown on a dis-pilities and verify the importance of this new programmasiage

play device. The variougipeline stagesre mentioned in Figure 2.
Earlier, these stages were implemented as fixed functioresoi
ware for graphics acceleration. Later, some of these stages
made programmable instead of being fixed function namely pro
cessing of vertices and fragment. Since all vertices anghfemts

*e-mail:skp@research.iiit.ac.in
te-mail:shiben@research.iiit.ac.in
temail:jagmohan@research.iiit.ac.in
§e-mail:pjn@iiit.ac.in

(Section 3). We develop techniques and applications iinglge-
ometry shader and our analysis will be helpful in clever esaf
geometry shader.

In past, game developers complained about slow state chmmge
cause of which they avoided using multiple textures. Iritbay
mapped textures on various objects with the help of a siegleite,
texture atlas [Nvidia 2004]. Shader Model 4.0 introduceayatex-
tures and 3D textures. Various images can be loaded as layars
ray texture (or as a 3D texture) and the shader can choos@éetw
these layers as the whole array texture is referenced bygtediex-
ture ID. Terrain rendering finds itself as a good applicabbarray
textures which we explain in detail in Section 4.

Along with the introduction of array textures, another netvee-

tive feature is layered rendering which seems an extendiofder
model’s one of the featurdylRT (Multiple Rendering Targets)
Where with MRT, fragments in the fragment shader can be redi-

‘ Modeling Transformations ‘

Y

‘ Per-Vertex Lighting ‘

Y

‘ Viewing Transformations ‘

‘ Projection Transformations ‘

'

‘ Clipping ‘

Y

‘ Rasterization ‘

Y

‘ Texturing & Coloring ‘

Y

‘ Display ‘

Figure 2: Traditional rendering pipeline

rected to differentolor attachmentsf the frame buffer; witHay-
ered rendering it is possible in the geometry shader to redirect
primitives to different layers of an array texture which ateached

to the frame buffer object. Independent rasterization fiathe dif-
ferent layers will be carried out. We find that multi-persipez
rendering and multiple light shadows are good applicatifray-
ered rendering and are discussed in Section 5. Real-time-Batp
rendering is good application which has been discussedIyil&
2006].

The new rendering pipeline also features streaming daténdbe
middle of the pipeline to the memory. This is termedsagam
outputby the Direct3D 10 system artdansform feedbacky the
OpenGL 2.1 system. This gives the facility of not going thgiou
the whole pipeline to process stream data which is not to be re
dered. Objects can be rendered as well as some information ca
be recorded in the same pipeline. We implemented simpleiggys
transformations and deformable models which harnessdsahe-
form feedback’s facilities; they are described in Section 6

A small overview of the features which came along with shader
model 4.0 as enumerated below:

1. Unified Architecture : A single point computation unit whi
is responsible for the variety of computations going on the
GPU (Section 2).

. Integer Operations : Integer (arithmetic, bitwise andves-
sion) instructions (32-bit) are now supported.

. Goemetry Shader : A new shader unit in the pipeline which
takes a primitive (point, line or triangle) as input and proes
zeroor more primitives (Section 3).

. Array Textures : This feature of Shader Model 4.0 brings
along two new texture storage units namelye- and two-
dimensional array texturewhich essentially mean a collec-
tion of one- and two-dimensional textures (Section 4).

cube map textures, three-dimensional textures, plus ore- a
two-dimensional texture arrays (Section 5).

6. Stream Output : This new mode to the graphics pipeline
records vertex attributed of the primitives processed éngé-
ometry shader or post vertex shader in case of fixed pipeline
or absence of geometry shader (Section 6).

1.1 Programmable GPUs : A Brief History

In history, 3D graphics goes as early as the days of Evans BeBut
land, founded by Ilvan Sutherland and David Evans in 1968.eSom
of their work involves projects for military and large indtial firms

for training and simulation, digital projection environmnie like
planetariums etc. SGI was founded by one of the studentsaof Iv
Sutherland, Jim Clark and Abbey Silverstone in 1981. In 1982

of the first products from SGI include IRIS 1000 (Integrateabsier
Imaging System). SGI also came up with an API, 'IRIS Graphics
Language’ (IRIS GL), which provided access to their highfaer
mance 3D graphics subsystems. Later, IRIS GL became OpenGL
which meant for the first time, fast, efficient, cross-platficgraph-

ics programs could be written.

Commodity based graphics hardware involving 3D functioesev
first developed by Matrox, Creative, S3 and ATl in 1995. Giaph
hardware production for consumer PC market grew with theint
duction of Voodoo Graphics PCI by 3Dfx in 1996. 3dfx also pro-
vided a graphics API called GLIDE for their VooDoo cards, @i
was kept at a much lower level to the hardware. This was difficu
for game programmers but they were able to harness the fuépo
of voodoo cards. The first voodoo card was capable of only ras-
terization and pixel processing. Later NVIDIA developeé first
card namedseForce 256 (SDR)n Oct 1999. This card was capa-
ble of fixed function hardware based transformation of wegiand
lighting with the Direct3D7 and OpenGL1.2 API.

The GeForce 3, was the first programmable GPU, allowing game
developers to do much more (2001). This breakthrough carbé as
rect3D8 introduced the first widely-used family of shad&kader
Model 1.1. ATI came up with Radeon 8500 supporting Shader
Model 1.4. The shader model at this stage involved a few @rass
bly intructions in the shader programs. Also branching aghing
were not supported at all. The next version, Shader Mode{[2i-0
rect3D9), involved improvement in terms of shader code tleng
GeForceFX series and Radeon 9700 brought it to the consumers
2003.

In 2005, we had the GeForce 6 and 7 series, which support Di-
rect3D9c¢ and Shader Model 3.0. X800 supported Direct3D%c bu
only Shader Model 2.0b. Shader Model 3.0 also saw the dawn of
high level shading languages. Direct3D9c named its shadimg
guage HLSL and OpenGL2.0 called it GLSL1.1. Shader Model
3.0 contained several improvements: improved floating tpoia-
cision, more code length, support of dynamic branching bith &
performance hit, unrolled looping and vertex texture lqokDue to
such enhancements, Shader Model 3.0 remained the most yised b
game developers, graphics researchers and GPGPU programme
NVIDIA released its own shading language Cg in 2003, whick wa
closer to HLSL, and was apparently used widely.

By the end of year 2006, NVIDIA released the first card, 880BGT

of their G80 family. This supported Shader Model 4.0 introg

by Direct3D10 System. OpenGL 2.1 with GLSL1.20 got intro-
duced in November 2006 which fully supported the new feature
of Shader Model 4.0. AMD is expected to release its R600 serie
card, Radeon 2900XT, in May 2007. The improvements in Shader
Model 4.0 are significant and tend to solve most issues gane-de

. Layered Rendering : With the introduction of Geometry opers raise.
Shader user can render to one of several different layers of

CUDATM (Compute Unified Device Architecture) which is a fun-
damentally new computing architecture, provides an actetise

Unified Shader

PIXE| Vertex shader
Vertex IL Physics e] |
Fragment shader < —
E Ray Tracing (Heavy Pixel) Vertex aI:i Fragment
Floating Point & workload balanced
Integer Processor Vertex shader e <. ¢
M orein I:l - S Unified Shader
Geometry future Fragment shader)

Figure 3: The Unified Architecture Terrain Rendering (Heavy Geometry)

Figure 4: Inefficient usage of hardware with previous architecture.
Schematic representation of dynamic load balancing witfifielh

tremendous processing power of NVIDIA GPUs through a revolu Architecture

tionary new programming interface. The core technology BUS
which is parallel data processings now exploited with GPUs en-
tering the space of massively parallel processing. The GiRiys
act as a co-processor to the CPU, offloading major part ofgg®c
ing.

2 Unified Shader Architecture

The Shader Model 4.0 GPUs use the same processor core te imple
ment vertex, geometry and fragment processing. Seperategr
sors with different capabilities were used for differerstigets of the
earlier GPUs. The previous model with seperate processoref-

tex and pixel units (Figure 4) was prone to under-perfornsafitie
Shader Model 4.0 GPUs dynamically allocate the availatiegss- Figure5: Rendering Geometry Images with vertex textures
ing resources to vertex, geometry and pixel units as denthhye

the load. This greatly improves the resource utilization.

Gu et al introduced Geometry Images [Gu et al. 2002] which cap
tures geometry as a simple 2D array of quantized points. As op
1. Dynamic load balancing due to the on-demand scheduling of Posed to remeshing an irregular mesh into one with a senilaeg
processes connectivity, they proposed a technique to remesh an arpisur-
face onto a completely regular structure called a geometage.
2. Higher power to vertex processor with introduction oflful ~ With the introduction of faster (common to vertex, geomeind
floating point precision fragment shader) texture fetch in the shaders a geometryaman
be rendered with high efficiency. For a geometry image of Bunn
3. High performance due to unified compute and texture access with 257 x 257 vertices the fps obtained on a Nvidia 7950GX2 was
713 as compared to that on 8800 GTX was 2281 (Figure 5).

The main advantages of Unified Architecture are

An important advantage of unified architecture is uniforroess to

the texture memory for all shaders. The vertex textures stpg Code Snippet from GLSL geometry shader for Geometry Image
on Shader Model 3.0 were slow [Asirvatham and Hoppe 2005]. AT rendering.

cards never supported vertex textures. This allows the fisexe

tures to store regular geometry and their access in vertgxgaom-

etry shaders. We compare rendering a grid@d0 x 1000 points /1 pos *= 5.0 corresponds to the scaling

using vertex texture to fetch the vertices. The FPS on a Mvidi // factor as nornalized vertices are stored in
6600 GT was 14, and on a Nvidia 7950GX2 was 32 fps. In contrast // the Geometry |mage.

GeForce 8800 GTX gave an 270 fps. This together with geometry ;; tex is the texture hol ding the geometry
generation on the Geommetry Shader (Section 3.1) makesit po // inage.

sible to render huge geometry completely on the shaders.eSom

of the applications which can take direct advantage of thevab ~ Po%- XV2 -t gng"ezme“(tex, texcoord.xy).rgb;
scenario are rendering of Geometry Images and renderinggs h gos: Wy: 1._0; o

terrains with dynamic LOD. Thus, unified shaders allow ugtoes gl _Position = gl _Mbdel Vi ewPr oj ecti onMatrix * pos;
geometry in form of textures and efficiently access the sanora f Eni t Vertex();

vertex shader. texcoord. x += 1.0;

. . 0s.Xyz = texture2DRect(tex, texcoord.x . rgb;
These features make it possible for the whole geometry todeds EOS_ X§Z «= 5.0: (v

in and rendered from the the GPU memory. This can increase thepos.w = 1. 0;
rendering speed especially if the geometry is quite regikerains gl _Position = gl _Model Vi ewProj ectionMatrix * pos;
are good examples of such geometry when represented uging re 5™ tVertex();

lar heightmaps. The 2D array of heights can be stored intestu { excoord. x -

= 1.0;
on the GPU and accessed by the shaders quickly for rendering. texcoord.y += 1.0;

pos. xyz = texture2DRect(tex,
pos.xyz *= 5.0;

pos.w = 1.0;

gl _Position = gl _Mdel Vi ewProj ecti onMatrix * pos;
EmitVertex();

texcoord. xy).rgb;

texcoord.x += 1.0;

pos. xyz = texture2DRect(tex,
pos. xyz *= 5.0;

pos.w = 1.0;

gl _Position = gl _Mdel Vi ewProj ecti onMatri x * pos;
EmitVertex();

texcoord. xy).rgb;

EndPrimtive();

The above code corresponds to expansion of a point from giepme
image into & x 2 grid of triangle to build the mesh.

Following 3 tables show the FPS numbers under various dongit

Geometry being sent from CPU in form of Points

Geometry being sent from CPU in form of Triangles (TRIANGISHRIP)

PR I

Dummy Indices stored in VBO, expanded in shader and heighthéd from vertex texture(LUMINANCE)

Dummy Indices stored in VBO, expanded as triangles in Gegn@#tader and heights fetched from texture

Nvidia 6600 GT
GridSize | CPU(Pts)\ | CPU(TH)Z | VBO+VT(Pts)®
256 x 256 259 155 200
512 x 512 65 39 80
1024 x 1024 17 10 23
2048 x 2048 5 3 6
Nvidia 7950 GX2
GridSize | CPU(Pts)\ | CPU(TH)Z | VBO+VT(Pts)®
256 x 256 370 180 740
512 x 512 94 50 215
1024 x 1024 24 13 59
2048 x 2048 6 3 15
Nvidia 8800 GTX
GridSize | CPU(Pt] | CPU(TI¥ | VT(PY® | VT(Tn~
256 x 256 705 374 1851 731
512 x 512 177 98 905 284
1024 x 1024 a4 24 261 90
2048 x 2048 13 7 68 27

Following table contains the FPS numbers for rendering airce
etry Images. We have used the freely available Geometry érég
the Bunny available at Hoppe’s web site.

1
Rendering Points

2
Rendering Triangles with help of Geometry generation

8800 GTX?
976

8800 GTX!
2281

7950 GX2!
713

6600 GT'
271

3 Geometry Shader

Geometry Shader is the most notable new feature of ShadeeMod

Input Assembler

Primitive Assembly

Fixed Stage

Geometry Shader |e———

y » Stream Output '—»

—_—
Fixed Stream

Rasterization

Fragment Shader

Programmable Stage

Aloway 03pIA

—_—
Programmable Stream

Memory I/O

Raster Operations

Figure6: The Shader Model 4.0 Graphics Pipeline

geometry into it. The new and potentially disconnected fiives
generated by the geometry shader are treated like otheitjem
coming directly from the application (OpenGL/DirectX).

Input/Output to the geometry shader and maximum numberref ve
tices emitted per call of geometry shader can be mentionéldein
following way from an OpenGL code.

//1nformng the CGeonetry Shader that there will be 4
//vertices emtted per primtive

gl ProgranPar anet eri EXT (shader,
GL_GEOVETRY_VERTI CES_QUT_EXT, 4);

//1nformng the Geonetry Shader that the input type to
//GS will be Points

gl ProgranPar anet eri EXT (shader,
GL_GEOVETRY_I NPUT_TYPE_EXT, GL_PO NTS);

/11 nform ng the Geometry Shader that the Qutput type to
/1GS will be Triangle Strips

gl ProgranPar anmet eri EXT (shader,
GL_GEOVETRY_QUTPUT_TYPE_EXT, GL_TRI ANGLE_STRIP);

Geometry shader can also access the neighbouring vertices
of a primitive. The above scenario called for introduc-
tion of a category of primitives viz. lines with ad-
jacency (LINESADJACENCY_EXT), line strips with adja-
cency (LINESTRIPADJACENCY_EXT), triangles with adja-
cency (TRIANGLESADJACENCY_EXT), and triangle strips with
adjacency (TRIANGLESTRIPADJACENCY_EXT). These prim-

4.0. This defines a new shader type which runs on the Graphicsitives take in more than the usual number of vertices; a liit w

Processing Unit. Geometry shaders are invoked after esrtice
processed by vertex shader, but prior to color clamping,stheid-

ing and clipping (Figure 6). The input to the Geometry Shader
is a single primitive (point, line, triangle) and other ditrtes like
texture coordinates, color, normal, etc. The output istafiprimi-
tives, whose number, type, and attributes need not matt¢hthgse

of the input primitives. The Geometry Shader can use all tinpu
information and data stored in textures to generate itsuiutjit
can, therefore, discard the geometry in the pipeline orrinsew

adjacency requires 4 vertices to describe its end pointstlagid
neighbours and a triangle with adjacency needs 6. Thuseatat

of extra geometry transfer, one can access the importaotnira-
tion of the neighbourhood of a primitive in the geometry strad
Silhouette calculation of 3D models requires neighbouiimfgr-
mation for the calculation of gradients. Thus, one can usé TR
ANGLES_ADJACENCY_EXT primitives in order to provide the
neighbourhood vertices to be processed in the geometresh@ad-
ometry shader can then access a couple of extra verticesatthé

required information (normals and tangents).

3.1 Geometry Generation

We describe an example of genertion and expanding of gegmetr
by the Geometry Shader in this section by rendering termafinar-
ious size with diffrent amount of geometry being sent and oég
being generated on the Geometry Shader. With the driveiorers
1.0-9755 for Linux the maximum amount of geometry which can
be generated is capped at 128 vertices per Geometry Shasr-ex
tion..

Grid Size Geom. Sertt | Geom. Gert. | FPS
512 x 512 512 x 512 2 X2 203
512 x 512 256 x 256 4 x4 91
512 x 512 128 x 128 8 X 8 21
1024 x 1024 1024 x 1024 2% 2 51
1024 x 1024 512 x 512 4 x 4 23
1024 x 1024 256 x 256 8 X 8 6
Grid Size | Geom. in VBO | Geom. Gerf. | FPS
512 x 512 512 x 512 2 X2 213
512 x 512 256 x 256 4 x4 91
512 x 512 128 x 128 8% 8 21
1024 x 1024 1024 x 1024 2% 2 60
1024 x 1024 512 x 512 4 x4 23
1024 x 1024 256 x 256 8 X 8 6

Amount of Geometry being sent from CPU (as Points)
2
Amount of Geometry generated in Geometry Shader to form tie: G

3
Amount of Geometry stored in VBO

Shader Model 4 Terrain Systema completely GPU based terrain
system where most of processing is done on the geometry ishade
with terrain geometry being accesed from the textures (2EaAr
Textures), tiles (grid of triangles) generated and expdndéh
some information from small VBOs and textures containingrge
etry and stitching of these tiles. The amount of geometryctvicein

be generated on Geometry Shader is limited. Currently onidialv
8800GTX we are able to expand a vertex to 128 vertices. With
this constraint we render 267 x 257 tile (with an extra row and
coloumn for stitching at top and right borders) with varioBO
sizes 0f32 x 32, 64 x 64 etc. Further these points from the VBOs
are expanded as grids to fill in for the missing near by points.

With the introduction of Geometry Shader one can send in dymm
points which can be further expanded as a grid of trianglebén
geometry shader. A novel approach for two level culling (Sec
tion 3.2) was used in the Terrain System which performs a sec-
ond level culling algorithm on the incoming points to the teer
shader and culls the vertices which would lie outside thetémn
after going through a Modelview and Projection. Thus forheac
tile we would perform a tile-level culling on the CPU and set a
flag for the tiles which are intersecting the frustum. Lateithe
vertex shader we receivera x n grid of points for a tile of size
M x N(m < M;n < N), for each of these incoming points we
pass them through the second level culling test, thus awpidilot

of expansion and rendering of extra geometry.

3.2 Two Level Culling

Geometry deletion enables culling of geometry in the geomet
shader. The tiles in the terrain system undergo the first lefe
culling on the CPU where the CPU culls large tiles and marks th
ones which intersect the frustum. The marked tiles are tested

for further culling on the GPU in vertex shader. For each tife
size256 x 256 to be rendered (Figure 7), CPU sends a VBO of size

A culled tilelet

Tilelets of intersecting
tiles tested for second
level culling

Inside tiles not tested for
second level culling

Figure 7: Tiles and Tilelets involved in first and second level of
culling
FPS With/Without 2-Level Culling
240 ‘ T
With 2nd;Leve| Culling ——
Without 2nd-Level Culling
220 | /
i A \
200 + ”‘J \ // \x,/\‘l L/ .
0} /\/ i
wol / g
o e
w /

140

120

100

80

60 I I I I

25
Time

Figure 8: Two level culling performance against generating and
rendering the extra geometry left out by the CPU culling

m X n wherem < 256,n < 256 (in case of Nvidia 8800GTX,
32 <m < 256,32 < n < 256, where maximum geometry gener-
ation @ x 8) happens withn = 32, n = 32). Each of these points
in the grid ofm x n are then tested in the vertex shader if they lie
inside or outside the frustum and accordingly labelled dedwr
not culled. We save the geometry generation and renderauftar
these points by culling them in vertex shader. The cullingtun
vertex shader is performed by mapping these grid pointsreesc
space and testing them against a range. The main advantage of
the technique is that we render exact amount of geometryrestju
thus an exact culling is performed. Secondly we can reduee th
CPU load by increasing the size of tiles.

4 Array Textures

One of the extensions introduced with Shader Model 4.0 is
EXT_texturearray. This extensions introduces the idea of one-
and two-dimensional array textures. A Texture array is decel
tion of one- and two-dimensional images of identical size for-
mat, organized in layersTexImage2Ds used to specify an one-
dimensional array texture, where theightspecify the number of
layers for the array texture. Similarfeximage3Ds used to declare

a two-dimensional array texture, where thepthspecify the num-
ber of layers of 2D textures. Maximum number of layers whiah c

be attached together can be queried using Getintegerv wiamp
as MAX_ARRAY_TEXTURE.LAYERS_EXT. On a nVIDIA 8800
GTX the maximum number of layers possible is 512.

2D-Array Textures are declared as follows :

/| Generate an opengl texture
gl GenTextures(1, & exid);
gl Bi ndText ur e(GL_TEXTURE_2D_ARRAY_EXT, texi d) ;

/1Setting up the paranmeters, note the 'R
gl TexPar aneteri (GL_TEXTURE_2D_ARRAY_EXT,
GL_TEXTURE_M N_FI LTER, GL_NEAREST);
gl TexParaneteri (GL_TEXTURE_2D_ ARRAY_EXT,
GL_TEXTURE_MAG FI LTER, GL_NEAREST);
gl TexPar aneteri (GL_TEXTURE_2D_ARRAY_EXT,
GL_TEXTURE_WRAP_S, GL_CLAMP_TO EDGE);
gl TexParaneteri (GL_TEXTURE_2D_ ARRAY_EXT,
GL_TEXTURE_WRAP_T, GL_CLAMP_TO EDGE);
gl TexParanmeteri (GL_TEXTURE_2D_ ARRAY_EXT,
GL_TEXTURE_WRAP_R, GL_CLAMP_TO EDGE);

space as well

/I Create space for the array texture
gl Texl mage3D(GL_TEXTURE_2D_ARRAY_EXT, 0, GL_RGBA, wi dth,
hei ght, depth, 0, GL_RGBA, GL_UNSI GNED BYTE, NULL);

//Put individual 2D inmage data to each |ayer

gl TexSubl mage3D(GL_TEXTURE_2D ARRAY_EXT, 0, 0, O,
wi dth, height, 1, GL_RGBA, GL_UNSI GNED_BYTE,
i mage_dat a_poi nter);

| ayer,

Texture array can be used in a shader as :

/Il decl aration of sanpler
uni form sanpl er 2DArray tex;

//fetching color fromlayer texcoord.z fromthe 2D

//1ocation texcoord.xy fromsanpler terraintex
color = texture2DArray (terraintex, texcoord).rgba;

Currently, this extension is not supported on the fixed-fismdfrag-

ment processing. Array textures can be accessed only useng t

programmable shaders. A layer is selected by specifying the
texture coordinate for 1D and 2D array textures, respelgtiveur-
ther it is accessed as though it were a one- or two-dimenisiera
ture. A 2D array texture sounds similar to a 3D texture. Thare
few differences between 2D array textures and 3D texturesase
of 2D array textures, texture lookups do not filter betwegrets,

though the same can be achieved in the shaders, where asin ca

of 3D textures various filtering options are provided. Reimdgto
different layers or 2D textures can only be achieved by ligdi
2D array texture to a frame buffer object.

Texture arrays are ideal to store data which is independesdch
layers, for e.g. terrain data. Terrain can be divided intack$ of
desired siz€1024 x 1024, 2048 x 2048) and these blocks can be
stored as various layers in a 2D array texture. An array texis!
accessed as a single unit in a programmable shader, usingla si
coordinate vector. A terrain extending over x n blocks can be
stored as an array texture withn layers, giving the user a sin-
gle point access to the whole or currently cached terrairvetae
computations like physics calculation (Section 6.1) needhdve
access to whole of the terrain. With array textures any pathe
terrain can be accessed by specifying the layer witexture co-
ordinate in case of a 2D array textures, thus providing ttee ed
selecting textures in the programmable shaders ratherdhan-
tervention from CPU regarding the binding of correct tegtufhe
same was possible with 3D textures, but the array textunesda
ditionaly be rendered to by binding them to a frame buffereabj
(EXT _framebufferobject). Along with physics, a dynamic terrain
could itself undergo deformation on the fly (may be an impsarnf
the ball can produce craters). A continously changing tesdoich

is stored as an array texture(s) can be evolved by rendesitigese
layers [Bhattacharjee et al. 2007].

Figure9: Multiple Shadows in 2 Pass.

5 Layered Rendering

The main use of 2D array texture comes with Layered Rendering
With an array texture bound to a framebuffer object we carieou
geometry from geometry shader to different layers. Thusleeng
different scenes/views in a single pass becomes possihléiphé
Render Targets were introduced in order to render to more ¢tha
framebuffers at Fragment Shader level. With MRT, we can pced
more than one output at the pixel level. We can say Layered Ren
dering provides the freedom of doing the same thing at gegmet
level and each layer can have independent rasterization.

In case of dynamic Environment Mapping, i.e., when the Em4r
ment Map is not static and changes with camera motion, we can
produce all the six faces of the map in a single pass thus@iin
2-pass algorithm for Cube-Map rendering. A couple of mongliap
cations of Layered Rendering which are also described balew
two pass motion blur and 2 pass multiple lights dynamic sivado

To bind the layers of an array texture to a frame buffer objfsit
lowing code can be used.

/1 Cenerate Texture to hold the 2D Array Texture
gl GenTextures(1, &colorTex);
gl Bi ndText ure(GL_TEXTURE_2D_ARRAY_EXT, col orTex);

/Il Create a 2D array texture and set other properties

sgl Texl mage3D (GL_TEXTURE 2D ARRAY_EXT, 0, GL_RGBA8, 256,

256, 2, 0, GL_RGBA, GL_FLOAT, 0);

/| Generate an FBO

gl GenFranebuf f er seEXT(1, &fbo);

gl Bi ndFr anebuf f er EXT (GL_FRAMEBUFFER_EXT, fbo);
gl BindTexture (GL_TEXTURE 2D ARRAY_EXT, 0);

//Attach the 3D texture which contains 2 Layers

//to the FBO

gl Framebuf f er Text ur eEXT (GL_FRAMEBUFFER_EXT,
GL_COLOR_ATTACHVENTO_EXT, col orTex, 0);

5.1 Efficient Multiple Dynamic Light Shadows

We use Layered Rendering to compute all N shadow maps cor-
responding to N lights in a single pass. Earlier methods us-
ing the Shadow Maps needed N passes for computation of N
Depth/Shadow maps. Layered Rendering allows an applicédio
bind an entire complex texture to a framebuffer object, amter
primitives to arbitrary layers computed at run time. Theeato
render to is specified by writing to the in-built varialgklayer.

Pass 1 : Pass the corresponding view & projection matrigessich
light along with the common model matrix of the scene to the Ge
ometry Shader. Each primitive is routed to N layers aftertimul

plying with i*" view and projection matrices corresponding: to

Light source and the common Model Matrix, and the Depth Map is
saved at'" Layer of the array of 2D textures.

.gI“_Layer = lightid;
for (int ii =0; ii < 3;

{

ii++)
pos = gl _TextureMatrix[0] * gl _Positionln[ii];

pos = gl _TextureMatrix[1] * pos;
gl _Position = gl _TextureMatrix[2] * pos;
Emi t Vertex();

}
EndPrimtive();

Thus, for each incoming triangle above code directs a cophef
triangle to layer numbelightid by settinggl_layer to lightid. Tex-
ture matrices are used here to store various modelview aojdgr
tion matrices corresponding to different lights.

Pass 2 : Back-project each pixel in the pixel shader to eatheof
light's frustum comparing the depth of that particular pik®m
light's points of view. We get a boolean answer on whethepikel
in under shadow or not with respect to a particular light seur

for (i =-p; i<=p; 1+=1.0)
for (j =-0; j<=q; j+=1.0)
{
//Light i
t.x = coordPos0.x + i/ TSl ZE;
t.y = coordPosO.y + j/TSIZE;
t.z = 0;

depth = texture2DArray(sanpler, t).r;
dept hsqr = depth * depth;

0l += depth / 25.0;

02 += depthsqr / 25.0;

//sanpler is the 2D array texture

/1 Above is performed for each |ight conputing nean sigma
/1 of depth values over a w ndow of pxq (soft-shadow
/1using Variance Shadow Maps techni que).

/1 Testing current pixel for shadow from Light i

if (coordPos0.z > nDl1 && coordPos0.x <= 1.0 &&
coordPos0.x >= 0.0 && coordPos0.y <= 1.0 &&
coordPos0.y >= 0.0)

sigma02 = nD2 - (nD1 = n01);

prob = sigma02 / (signma02 + ((coordPosO0.z -
* (coordPos0.z - nD1)));

color = color * prob;

no1)

With N comparisons we get N hard shadows corresponding to N
light sources in 2 passes. One can use any image based teehniq
to incorporate soft shadows, we have used Variance Shadqg Ma
[Donnelly and Lauritzen 2006] for the same.

5.2 Motion Blur using Layered Rendering

Motion blur is simulated using the accumulation buffer. Acwla-
tion buffers provide a higher precision buffer as comparefiame
buffer for adding different images with varying weight. Aebided
image comprised in accumulation buffer withumber of images

Figure 10: A rotating Teapot with motion blur.

to conveym previous positions of the object to the geometry shader
using theTexture matricegavailable (32 on Nvidia 8800 GTX).

coord. xy = gl _TexCoord[O0] . xy;

for (float i=1.0; i<NLAYERS; i+=1.0)

coord.z = i;
color += (NLAYERS-i) * texture2DArray(sanp, coord);

}

//Handling the current draw position here
coord.z = O;

col or += texture2DArray(sanp, coord);

/1 Maki ng Al pha 1
color.rgba /= color.a;

Above code shows how we put together the various framelsuffer
stored in the first pass in a 2D array texture.

6 Transform Feedback

Stream-Output/Transform-Feedback is a new feature inghder-
ing pipeline to stream data out in the middle of the pipelim¢hie
memory (Figure 6). This gives the facility of not going thgtuthe
whole pipeline to process stream data of the object if it istade
rendered. Also, objects can be rendered and some informatio
the fly, can be recorded working in the same pipeline. With, tii
is possible to change the state of the object continuousigifiying

the original data on the GPU itself, without any interfererfiom

the CPU.

6.1 Physics of point objects

Simple physics calculation of objects can be done with ohby t
previous physical state of the object. Instantaneousiposind ve-
locity are enough for simple physics simulation of pointeatig. At

any moment, the position and velocity can be updated fromptie
vious state and external forces giving them acceleratiam.@PU-
based terrain representation (Section 4) allows quick iphy&m-
ulation on using the transform feedback feature of the new&P
The CPU renders the objects for interaction, such as a bufich o
balls released over a terrain.

The CPU triggers a buffer object containing point primigvior
each ball with vertex as its initial position and texture iboate
as its initial velocity. The vertex shader computes its rnmodition
and velocity according to necessary acceleration (e.guitgteon)
which is determined by its current position and velocity. rtg&

takesn + 1 passes. Thus, the number of passes is proportional to shader also accesses the terrain data stored as textusdsitde

the quality of blur needed.

As described with multiple shadow lighting, we can transfahis
problem too into a two pass algorithm using the Layered Rengle
This example shows how layers can be used to simulate mdtion b
by rendering to different layers each having a different etoéw
and optionally projection matrix suited for generatingeattjspace
blur (Figure 10). We useth differentmodelview matrices order

height at the object’s position. If the object’s height isdehan
that of terrain’s, then there is a collision with the terradide reflect
the velocity vector of the object with respect to the tersaimormal
at that position. The changed position and velocity is réedrin
another buffer object by the vertex shader to use in the resd-i
tion with the help of transform feedback; the rest of the pigeis
discarded. By doing ping pong between the two buffer objebes
positions and velocities get updated every frame. One obtiffer

Figure 11: Screenshot from Shader Model 4 Terrain System.
Physics of balls interacting with the terrain

objects is then used to render an object at its location. We we
able to trigger up to 4000 balls (objects) to interact with térrain,

at interactive framerates (21). The performance dropsifigevith
the increase in number of objects (Graph 12).

gl GenBuf fersARB (1, &t fvbo[O0]);

gl Bi ndBuf f er ARB (GL_ARRAY_BUFFER_ARB,

gl Buf f er Dat aARB (GL_ARRAY_BUFFER_ARB,
count *4xsi zeof (fl oat), initdata, GL_STATI C_DRAWARB);

tfvbo[O]);

Above code demonstrates how an array buffer is declaredsofi
storing the streamed output-ed data.

gl ActiveVaryi ngNV(shader,
gl Acti veVaryi ngNV(shader,

"varpos\ 0");
"velocity\0");

gl Li nkPr ogr amARB(shader) ;

I oc[0]
loc[1]

gl Get Varyi ngLocati onNV (shader,
gl Get Varyi ngLocati onNV (shader,

"varpos\ 0");
"vel ocity\0");

Getting a handle to variables which will be recorded duriragns-
form feedback.

gl Bi ndBuf f er RangeNV (GL_TRANSFORM FEEDBACK_BUFFER_NV,
0, tfvbo[1l-current_buffer], O, 4xcount=sizeof(float));

gl Begi nTr ansf or nFeedbackNV(GL_LI NES);

gl Enabl eCl i ent St at e(GL_VERTEX_ARRAY) ;
gl Enabl eCl i ent St at e(GL_TEXTURE_COORD_ARRAY) ;

gl Bi ndBuf f er ARB(GL_ARRAY_BUFFER_ARB,
tfvbo[current _buffer]);

gl VertexPointer(4, GL_FLOAT, 0, NULL);

gl Bi ndBuf f er ARB (GL_ARRAY_BUFFER_ARB,
ttfvbo[current_buffer]);

gl TexCoordPoi nter(4, G._FLOAT, 0, NULL);

gl DrawArrays(GL_PONTS, 0, 1);

gl Di sabl ed i ent Stat e(GL_TEXTURE_COORD_ARRAY) ;
gl Di sabl ed i ent Stat e(GL_VERTEX_ARRAY);

gl EndTr ansf or mFeedbackNV() ;

Code snippet for rendering using VBOs with transform feettba
enabled. The input primitives are set as GINES which should
match the Geometry shader input set earlier.

var pos = gl _Positionln[0];
velocity = gl _TexCoordIn[0][0];

0.01;
-=0.01;

varpos. x +=
vel ocity. x

Geometry Shader code where the variables of our choice are

recorded with transform feedback.

Physics Graph
0.05 T T

Ti‘me in éeconas
0.045 - R

0.04 | 1

0.035 - 1

0.03 |- B

0.025]

Time in Seconds

0.02 1

0.015 B

0.005 1

| | | | | | | | |
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Number of Balls

Figure 12: Time taken for computation increases linearly with lin-
ear increase in number of balls

The bottleneck of transfering updated physics state to tR&) G
from CPU for physics is overcome by keeping CPU oblivious to
the physics state. Complete physics can be performed onPhé G
using the transform feedback, thus cutting on the preciobb-C
GPU bandwidth. A major advantage of performing physics gisin
the transform feedback on the GPU is that its highle scalabe
have tested the physics for point objects for high humbedstha
results we get are very convincing. We find out that the comtn
load grows linearly with the increase in balls (Figure 12).

We use array textures to represent the GPU cache of thertdorai
facilitate the interaction of objects with the terrain asnti@ened in
Section 4. This makes it possible to use the layer ID of arvidei
ual block as a variable. Thus, an appropriate block of thbeaan
be selected based on the external objeet'sy) location. Conven-
tional textures are statically bound and their IDs cannotdyable.

References

ASIRVATHAM, A., AND HOPPE H. 2005. Terrain rendering using
gpu-based geometry clipmapSPU Gems 246-53.

BHATTACHARJEE, S., RATIDAR, S., AND NARAYANAN, P. J.
2007. Technical report on gpu-resident terrains. Tech. rep

BLYTHE, D. 2006. The direct3d 10 systerACM Transactions of
Graphics 253, 724-734.

CrOw, F. C. 1977. Shadow algorithms for computer graphics.
In SIGGRAPH '77: Proceedings of the 4th annual conference
on Computer graphics and interactive techniqud€M Press,
New York, NY, USA, 242-248.

DONNELLY, W., AND LAURITZEN, A. 2006. Variance shadow
maps. InI3D '06: Proceedings of the 2006 symposium on In-
teractive 3D graphics and gameB8CM Press, New York, NY,
USA, 161-165.

GOVINDARAJU, N. K., LARSEN, S., GRAY, J.,AND MANOCHA,
D. 2006. Memory—a memory model for scientific algorithms
on graphics processors. BC '06: Proceedings of the 2006
ACM/IEEE conference on Supercomputif®CM Press, New
York, NY, USA, 89.

GuU, X., GORTLER, S. J.,AND HOPPE H. 2002. Geometry im-
ages.ACM Trans. Graph. 213, 355-361.

HARRIS, W., 2005. bit-tech.net, a bluffer's guide to shader models

LosAssq F.,AND HOPPE H. 2004. Geometry clipmaps: Terrain
rendering using nested regular gridsCM Trans. Graph. 233,
769-776.

NVIDIA, 2004. Improve batching using texture atlases, nvidia sdk
white paper.

WAGNER, D. 2004. Terrain geomorphing in the vertex shader.
ShaderX2, Shader Programming Tips and Tricks with Dire¢tX 9
Wordware Publishing

WiLLiaMS, L. 1978. Casting curved shadows on curved surfaces.
270-274.

