Fusion of Face and Speech Data for Person Identity Verification

Souheil Ben-Yacoub, Yousri Abdeljaoued, and Eddy Mayoraz, Member, IEEE

Abstract—Biometric person identity authentication is gaining more and more attention. The authentication task performed by an expert is a binary classification problem: reject or accept identity claim. Combining experts, each based on a different modality (speech, face, fingerprint, etc.), increases the performance and robustness of identity authentication systems. In this context, a key issue is the fusion of the different experts for taking a final decision (i.e., accept or reject identity claim). We propose to evaluate different binary classification schemes (support vector machine, multilayer perceptron, C4.5 decision tree, Fisher’s linear discriminant, Bayesian classifier) to carry on the fusion. The experimental results show that support vector machines and Bayesian classifier achieve almost the same performances, and both outperform the other evaluated classifiers.

Index Terms—Bayesian decision, binary classifiers, biometrics, data fusion, face recognition, speaker recognition, support vector machine.

I. INTRODUCTION

THE AREA of identity recognition has been receiving a lot of attention in the last years. There is an increasing demand of reliable automatic user identity recognition systems for secure accesses to buildings or services. Classical techniques based on passwords and cards have a certain number of drawbacks. Passwords may be forgotten or compromised, cards may be lost or stolen and the system is not able to make the difference between a client and the impostor. A lot of techniques have been suggested and investigated by different researchers to recognize users by characteristics which are difficult to impost. Biometrics [1] is the area related to person recognition by means of physiological features (fingerprints, iris, voice, face, etc.).

A biometric person recognition system can be used for person identification or verification. In the verification task, a user claims a certain identity (“I am user X”). The system should accept or reject this claim (decide if the user is who he claims to be). In the identification task, there is no identity claim from the user. The system should decide who the user is (eventually unknown in an open-set case). In this work we will focus on the issue of biometric person verification. The identity verification problem is basically a binary classification problem (accept or reject identity claim).

A large number of commercial biometric systems are using fingerprint, face, or voice. Each modality has its advantages and drawbacks (discriminative power, complexity, robustness, etc.). One of the most important features for commercial applications is the user acceptability. Techniques based on iris or retina scan are very reliable but not well accepted by end-users. Identification through voice and face is natural and easily accepted by end-users. A lot of work has been done in the last years in the field of face and speaker recognition yielding mature techniques that can be used in applications.

Automated face recognition has been witnessing a lot of activity during the last years [2]–[4]. A certain number of new techniques were proposed. Among those, which are representative of new trends in face recognition, one may cite eigenface [5]–[7], elastic graph matching [8], autoassociation and backpropagation neural nets [9]. These three techniques were analyzed and evaluated by Zhang et al. [10]. This survey is perhaps the most representative and comprehensive because of the analysis of these algorithms under a common statistical decision framework and the evaluation on a common database with more than hundred different subjects. The experimental results of this survey indicate that the elastic graph matching (EGM) outperforms other techniques. This method will be presented in Section II.

Speaker recognition is a very natural way for solving identification and verification problems. With largely available telephone networks and cheap microphones on computers, user recognition through speech becomes a natural solution. A lot of work has been done in this field and generated a certain number of applications of access control for telephone companies [11]. Text-dependent and text-independent speaker verification will be presented in Section III.

It has been shown that combining different biometric modalities enables to achieve better performances than techniques based on single modalities [12]–[19]. Combining different modalities allows to alleviate problems intrinsic to single modalities. The fusion algorithm, which combines the different modalities, is a very critical part of the recognition system. A key question is what strategy should be adopted in order to make the final decision?

The sensed data (face and speech) are processed by different verification experts: a face verification expert and a speaker verification expert. Each expert, given the sensed data, will deliver a matching score in the range between zero (reject) and one (accept). The fusion module will combine the opinions of the different experts and give a binary decision: accept or reject the claim. When combining n modalities, the fusion algorithm processes n-dimensional vectors. Each component
of the vector is a matching score in $[0, 1]$ delivered by
the corresponding modality expert. A verification scenario
involving two modalities is depicted in Fig. 1. The paper will
address the issue of which binary classifier to use for the fusion
of different expert “opinions.” We propose to investigate
different binary classifiers and to evaluate them on a large
database (XM2VTS database\(^1\) with 295 people) according to
a specified and common testing protocol.

The face verification algorithm will be presented in
Section II. The speaker verification based on text-dependent
and text-independent approaches is discussed in Section III.
The fusion of different modalities as well as the different
classifiers are described in Section IV. The evaluation protocol
and the audio-visual database are presented in Section V.
Finally we present the evaluation results and the main
conclusions.

II. FACE VERIFICATION

The elastic graph matching (EGM) introduces a specific
face representation as illustrated in Fig. 2. Each face is rep-
resented by a set of feature vectors positioned on nodes of
a coarse, rectangular grid placed on the image. As features
the modulus of complex Gabor responses from filters with six
orientations and three resolutions are used.

Comparing two faces corresponds to matching and adapting
a grid taken from one image to the features of the other
image. Therefore both the feature vectors of each node and the
deformation information attached to the edges are taken into
account. The quality of different matches between an observed
grid and a reference grid can be evaluated using the following
distance:

\[
d(G, R) = \sum_{i=1}^{N_n} d_n(G_{ni}, R_{ni}) + \lambda \sum_{j=1}^{N_e} d_e(G_{ej}, R_{ej})
\]

\[
= \sum_{i=1}^{N_n} d_n + \lambda \sum_{j=1}^{N_e} d_e
\]

where G_{ni} represents the ith node of grid G, R_{ej} is the jth
node of grid R; N_n, N_e are the number of nodes and edges,
respectively, and λ is a weighting factor which characterizes
the stiffness of the graph. A plastic graph which opposes no
reaction to deformation corresponds to $\lambda = 0$, while a totalement
rigid graph is obtained with very large values of λ.

Because of the large number of possible matches an approx-
imate solution in [8] was proposed. The matching consists of
two consecutive steps: rigid matching and deformable match-
ing. In rigid matching an approximate match is estimated,
which corresponds to setting a high value of λ. In deformable
matching the grid is deformed in order to minimize (1).
Advantages of the elastic graph matching are the robustness
against variation in face position, and expression. This owes
to the Gabor features, the rigid matching stage, and the
defformable matching stage. If the eigenface is used a scale
and face position compensations are needed.

We note here that the contribution from nodes are consid-
ered equally. This is a drawback of the algorithm since the
contributions of each node to the distance are different.

III. SPEAKER VERIFICATION

In the present work, we will use two different approaches
to speaker verification. The first is a text-independent based

\(^{1}\)From ACTS-M2VTS project, available through http://www.ee.surrey.ac.uk/Research/VSSP/xm2vts.
speaker verification approach. The second is based on textdependent speaker verification: the user has to utter the same text as during the training session (i.e., utterances of digits from zero to nine). The text-independent method approach uses a sphericity measure [20] and the text-dependent technique uses hidden Markov models (HMM’s) [21]. Our experiments have used the results of two different speaker verification techniques that have been described in [22].

A. Text-Independent Speaker Verification

The audio signal (after removal of silence) is converted to linear prediction cepstral coefficients (LPCC) [23]. The energy of the signal is normalized by a mapping to [0, 1] using a tangent hyperbolic function. The feature vector is composed by 12 LPCC coefficients and the signal energy yielding a 13-dimensional vector.

A client is modeled by the covariance matrix X of the feature vectors of the client’s training data \(\{X_1, X_2, \ldots, X_n\}\)

\[
\hat{X} = \frac{1}{n-1} \sum_{i=2}^{n} X_i
\]

\[
X = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \hat{X})(X_i - \hat{X})^t.
\]

During a test session, the covariance matrix Y is computed over the test speech data of a person requesting an access. The arithmetic-harmonic sphericity measure $D_{SPH}(X, Y)$ [20] is used as similarity measure between the client and the accessing person

\[
D_{SPH}(X, Y) = \log \left[\frac{\text{tr}(YX^{-1})\text{tr}(XY^{-1})}{m^2} \right]
\]

where m is the dimension of the feature vector and tr(X) the trace of X. The similarity values were mapped to the interval [0, 1] with a sigmoid function. This similarity measure will be used by the “fusion algorithm” in order to take the final decision about the person’s claim.

B. Text-Dependent Speaker Verification

The text dependent speaker verification is based on hidden Markov models (HMM’s). The HMM’s were largely used in speech processing because of the temporal structure of the speech signal [24]. The HMM has a certain number of parameters that are set so as to best explain a given set of patterns of a known category. We will define two categories: the client category and the impostor (or world) category. Each client’s training set will generate a particular HMM (i.e., a HMM with a certain instance of its parameters). The world or impostor training set will also generate a particular HMM.

The feature vector that will be used is the same as for sphericity. Temporal informations as first and second derivatives will be added to the feature vector yielding a 42-dimensional vector.

The HMM model of a particular category allows to compute the likelihood of a test pattern or feature vector (i.e., given a test pattern what is the likelihood that it was generated by this model). When a user claims a certain identity Id, the HMM of the claimed identity will be used to compute the likelihood of the feature vector being generated by the client Id. Similarly, the HMM modeling the world (or impostors) will be used to compute the likelihood of the feature vector being generated by an impostor. The decision is then made by comparing the likelihood ratio to a predefined threshold.

The HMM-based verification technique that is used here needs three HMM sets: client models, world models, and silence models. The world models serve as speaker-independent models to represent speech of an average person. The world models are computed on a distinct database POLYcost² database. Finally, three silence HMM’s are used to model the silent parts of the signal.

All models were trained based on the maximum likelihood criterion using the Baum–Welch (EM) algorithm. The world models were trained on the segmented words of the POLYcost database, where one HMM per word was trained.

For verification, the Viterbi algorithm [24] is used to calculate the likelihood $p(X_j|M_{ij})$, where X_j represents the observation of the segmented word j; M_{ij} represents the model of subject i and word j. The log-likelihood of word j is normalized by the numbers of frames N_j and sum them over all words W, which leads to the following measure:

\[
\log p(X|M_{ij}) = \frac{1}{W} \sum_{j=1}^{W} \log \frac{p(X_j|M_{ij})}{N_j}.
\]

This measure is calculated for the model M_c of a given client c and for the world model M_w. The following similarity:

\[
D_{HMM} = \log \frac{p(X|M_c)}{p(X|M_w)}
\]

is computed and mapped to the interval [0, 1] as described in Section III-A. The final measure will be then used by the fusion algorithm to make the final decision.

IV. FUSION

Having computed a match score between the claimed identity and the user, a verification decision is made whether to accept or reject the claim.

Combining different modalities results in a system which can outperform single modalities [25], [26]. This is especially true if the different experts are not correlated. We expect from the fusion of vision and speech to achieve better results. In the next section, we will investigate different fusion schemes and compare them. The different binary classification approaches that will be evaluated are:

- support vector machines;
- minimum cost Bayesian classifier;
- Fisher’s linear discriminant;
- C4.5 decision trees;
- multilayer perceptron.

²For more informations see http://circwww.epfl.ch/polycost.
A. SVM Fusion

The support vector machine is based on the principle of structural risk minimization [27]. Classical learning approaches are designed to minimize the empirical risk (i.e., error on a training set) and therefore follow the empirical risk minimization principle. The SRM principle states that better generalization capabilities are achieved through a minimization of the bound on the generalization error.

We assume that we have a data set \(\mathcal{D} \) of \(M \) points in an \(n \)-dimensional space belonging to two different classes +1 and -1

\[
\mathcal{D} = \{(x_k, y_k) | k \in \{1, \cdots, M\}, x_k \in \mathbb{R}^n, y_k \in \{+1, -1\}\}.
\]

A binary classifier should find a function \(f \) that maps the points from their data space to their label space

\[
f: \mathbb{R}^n \rightarrow \{+1, -1\}
\]

\[
x_k \mapsto y_k.
\]

It has been shown [27] that the optimal separating surface is expressed as

\[
f(x) = \text{sign} \left(\sum_i \alpha_i y_i K(x_i, x) + b \right)
\]

where \(K(x, y) \) is a positive definite symmetric function, \(b \) is a bias estimated on the training set, \(\alpha_i \) are the solutions of the following quadratic programming (QP) problem:

\[
\begin{align*}
\min_A W(A) &= -A^T I + \frac{1}{2} A^T D A \\
\text{with the constraints:} &
\sum_i \alpha_i y_i = 0 \text{ and } \alpha_i \in [0, C] \\
\text{where:} &
(i, j) \in [1, \cdots, M] \times [1, \cdots, M] \\
(A)_{ij} &= \alpha_i \\
(D)_{ij} &= y_i y_j K(x_i, x_j).
\end{align*}
\]

In the nonseparable case the constant \(C \) must be set to a given value. Most people do adopt an empirical approach for the choice of \(C \) and set it to some arbitrary value (in our experiments \(C = 1000 \)).

The kernel functions \(K(x, y) \) define the nature of the decision surface that will separate the data. They satisfy some constraints in order to be applicable (Mercer’s conditions, see [27]). Some possible kernel functions have been already identified [we assume \((x, y) \in \mathbb{R}^n \times \mathbb{R}^n \n]\):

- \(K(x, y) = (x^T y + 1)^d \) with \(d \in \mathbb{N} \), this defines a polynomial decision surface of degree \(d \).
- \(K(x, y) = e^{-\|x-y\|^2} \) is equivalent to one RBF classifier.

The computational complexity of the SVM during the training depends on the number of data points rather than on their dimensionality. At run time the classification step of SVM is a simple weighted sum.

B. Minimum Cost Bayesian Classifier

Since data from multiple sensors is used for the detection of the identity of a person (signal of interest), we can use results from the fields distributed detection and distributed estimation [28]. Doing so the problem of the multimodal person authentication can be formulated using the Bayesian risk [29].

Let us consider the binary event \(\omega \), which denotes the presence of the claimed identity (\(\omega = 1 \)) or its absence (\(\omega = 0 \)). Given the \textit{a priori} probability \(g = P(\omega = 1) \), the joint density of the local authentication probabilities obeys

\[
\xi(x) = f(x|\omega = 0)(1-g) + f(x|\omega = 1)g
\]

where \(f(x|\omega) \) is a likelihood function.

Using the Bayes’ theorem, the \textit{a posteriori} authentication probability is

\[
p = P(\omega = 1|x) = \frac{f(x|\omega = 1)g}{\xi(x)}.
\]

By combining (9) and (10) we obtain

\[
p = \left\{ 1 + \left[\frac{g f(x|\omega = 1)}{1-g f(x|\omega = 0)} \right]^{-1} \right\}^{-1}.
\]

Furthermore assuming that the sensors outputs are independent to make development easier (the hypotheses is reasonable when combining speech and face data generated by different sensors)

\[
f(x|\omega) = \prod_{i=1}^n f_i(x_i|\omega)
\]

where \(f_i(x_i|\omega) \) is a local likelihood function of the sensor \(i \).

Using (12) we can express the \textit{a posteriori} authentication probability \(p \) as a function of local likelihood ratios given by

\[
p = \left\{ 1 + \left[\frac{g \prod_{i=1}^n f_i(x_i|1)}{1-g \prod_{i=1}^n f_i(x_i|0)} \right]^{-1} \right\}^{-1}.
\]

The Bayesian formulation of the person authentication problem requires the definition of a function which assigns a cost to each correct and incorrect decision. Specifically, \(C_{ij} \), with \(i, j \in \{0, 1\} \), represents the cost of deciding \(\alpha = i \) when \(\omega = j \) is present. The aim of this method is to minimize the expected cost function, also called the \textit{Bayes risk} [30]

\[
B = E\{C_{ij}\} = C_{00} P(\omega = 0, \omega = 0) + C_{01} P(\omega = 0, \omega = 1) + C_{10} P(\omega = 1, \omega = 0) + C_{11} P(\omega = 1, \omega = 1).
\]

The solution of this optimization problem is given in [30], where the observation vector \(y = (y_1, \cdots, y_n) \) is used instead of the authentication probability vector \(x \)

\[
a = \begin{cases}
1, & \text{if } \frac{f(x|\omega = 1)}{f(x|\omega = 0)} > \frac{1-g}{g} \frac{C_{10}}{C_{00}} - \frac{C_{11}}{C_{00}} \ \text{otherwise.}
\end{cases}
\]
Since the sensors are independent (15) can be expressed in the following form:

\[
a = \begin{cases}
1, & \text{if } \frac{n}{\sum_{i=1}^{n} f_i(x_i | \omega = 1)} > 1 - \frac{g}{g'}, \frac{C_{10} - C_{01}}{C_{11}} \leq g \\
0, & \text{otherwise.}
\end{cases}
\] (16)

We note in (16) that the optimal solution for the decision rule is also a likelihood ratio test.

The standard "0-1" cost function [31] has been chosen in this work. The cost is zero if a correct decision is made, and one if an incorrect decision is made. This choice arises from the fact that the decision threshold is easy to determine. Furthermore we assume that \(g = 1/2 \) (i.e., both events \(\omega = 1 \) and \(\omega = 0 \) are equally likely a priori). In this case the decision rule becomes

\[
a = \begin{cases}
1, & \text{if } \frac{n}{\sum_{i=1}^{n} f_i(x_i | \omega = 1)} > 1 \\
0, & \text{otherwise.}
\end{cases}
\] (17)

The quality of the probability fusion and decision models depends on the modeling of the likelihood function. Due to its shape diversity and to the domain of its densities \([0, 1]\), the Beta family of distributions is a good candidate for our modeling purposes

\[
f_i(x_i | \omega) = \frac{\Gamma(\alpha_{i,\omega} + \beta_{i,\omega})}{\Gamma(\alpha_{i,\omega})\Gamma(\beta_{i,\omega})} x_i^{\alpha_{i,\omega} - 1}(1 - x_i)^{\beta_{i,\omega} - 1} (18)
\]

where \(\Gamma \) is the gamma function, \(0 \leq x_i \leq 1 \), \(\alpha_{i,\omega} > 0 \) and \(\beta_{i,\omega} > 0 \). The mean \(\mu \) and the variance \(\sigma \) of the Beta distribution are given by [31]

\[
\mu = \frac{\alpha_{i,\omega}}{\alpha_{i,\omega} + \beta_{i,\omega}} \quad (19)
\]

\[
\sigma = \frac{\alpha_{i,\omega}\beta_{i,\omega}}{\left(\alpha_{i,\omega} + \beta_{i,\omega}\right)^2(\alpha_{i,\omega} + \beta_{i,\omega} + 1)}. \quad (20)
\]

Once \(\mu \) and \(\sigma \) are estimated from a training set, the parameters \(\alpha_{i,\omega} \) and \(\beta_{i,\omega} \) of the likelihood function \(f_i(x_i | \omega) \) can be determined by using the relationships (19) and (20).

Since the likelihood function is specified by (18), we can substitute the likelihood ratio in (13) and (17) with

\[
\frac{f_i(x_i | \omega = 1)}{f_i(x_i | \omega = 0)} = \frac{\Gamma(\alpha_{i,1} + \beta_{i,1}) \Gamma(\alpha_{i,0})\Gamma(\beta_{i,0})}{\Gamma(\alpha_{i,1})\Gamma(\beta_{i,1}) \Gamma(\alpha_{i,0} + \beta_{i,0})} x_i^{\alpha_{i,1} - \alpha_{i,0} - 1}(1 - x_i)^{\beta_{i,0} - \beta_{i,1} - 1}. \quad (18)
\]

C. Fischer Linear Discriminant

There is a group of classifiers called linear discriminant classifiers. The main idea of these classifiers is to project \(n \)-dimensional data onto a line according to a given direction \(w \). If the direction is chosen correctly, then the classification task can be easier in one dimension. The choice of the projection direction can be determined by different criteria. The Fischer’s linear discriminant [32] aims at maximizing the ratio of between-class scatter to within-class scatter.

Given a set of \(n_1 \) points belonging to class \(C_1 \), and \(n_2 \) points belonging to class \(C_2 \). We suppose the data points \(x_i \) to be in \(\mathbb{R}^n \). The \(n \)-dimensional mean of each class is

\[
m_j = \frac{1}{n_j} \sum_{x_i \in C_j} x_i, \quad \forall j \in \{1, 2\}.
\]

The scatter matrices of each class is defined by

\[
S_j = \sum_{x_i \in C_j} (x_i - m_j)(x_i - m_j)^t, \quad \forall j \in \{1, 2\}.
\]

The between-class scatter matrix is defined by

\[
S_b = (m_2 - m_1)(m_2 - m_1)^t.
\]

The linear discrimination consists in finding a direction vector \(w \) in \(\mathbb{R}^n \) for the linear projection. All the data points will be projected as follows:

\[
y = w^t x.
\]

The projection direction which guarantees the best separation is given by Fischer’s criteria (i.e., maximizing the ratio of between-class scatter to within-class scatter). This criteria can be written as finding \(w \) which maximizes the functional \(J(w) \)

\[
J(w) = \frac{w^t S_b w}{w^t (S_1 + S_2) w}.
\]

The functional is also known as the Rayleigh quotient, and the maximum is reached at

\[
w = (S_1 + S_2)^{-1}(m_1 - m_2).
\]

D. C4.5 Classifier

A decision tree, is a tree where at each node a test on a particular attribute of the data is performed, and where the leafs corresponds to a particular class. The path from the root node to a particular leaf is then a series of tests on the attributes that classifies the data to the class defined by the particular leaf.

C4.5 is the most used algorithm for inducing decision trees [33]. It uses approaches from information theory to derive the most discriminant features. During training, an entropy criteria selects the most informative or discriminative features. The input space is then partitioned recursively. A tree pruning is also performed, it reduces the effect of noise and discards non significant subtrees. The rules applied during pruning generate a more general description of the classification process.

E. MLP Classifier

A multilayer perceptron with one hidden layer will be used for the classification purpose. The hidden layer will be composed by ten hidden units. Training will be performed with the classical backpropagation algorithm [34], [35].
V. EXPERIMENTS AND RESULTS

A. The XM2VTS Database

The XM2VTSDB [36] database contains synchronized image and speech data as well as sequences with views of rotating heads. The database includes four recordings of 295 subjects taken at one month intervals. On each visit (session) two recordings were made: a speech shot and head rotation shot. The speech shot consisted of frontal face recording of each subject during the dialogue.

The database was acquired using a Sony VX1000E digital cam-corder and DHR1000UX digital VCR. Video is captured at a color sampling resolution of 4:2:0 and 16 bit audio at a frequency of 32 kHz. The video data is compressed at a fixed ratio of 5:1 in the proprietary DV format. In total the database contains approximately 4 TBytes (4000 Gbytes) of data.

When capturing the database the camera settings were kept constant across all four sessions. The head was illuminated from both left and right sides with diffusion gel sheets being used to keep this illumination as uniform as possible. A blue background was used to allow the head to be easily segmented out using a technique such as chroma key. A high-quality clip-on microphone was used to record the speech. The speech sequence consisted in uttered digits from zero to nine.

B. The Experiments Protocol

The database was divided into three sets: training set, evaluation set, and test set (see Fig. 3). The training set is used to build client models. The evaluation set is selected to produce client and impostor access scores which are used to estimate parameters (i.e., thresholds). The estimated threshold is then used on the test set. The evaluation set is used by the fusion module as training set. The test set is selected to simulate real authentication tests. The three sets can also be classified with respect to subject identities into client set, impostor evaluation set, and impostor test set. For this description, each subject appears only in one set. This ensures realistic evaluation of impostor claims whose identity is unknown to the system. Two different configuration are proposed. The main difference is in the choice of sessions for the evaluation set.

The protocol is based on 295 subjects, four recording sessions, and two shots (repetitions) per recording session. The database was randomly divided into 200 clients, 25 evaluation impostors, and 70 test impostors. (See [36] for the subjects’ ID’s of the three groups.)

C. Performance Measures

Two error measures of a verification system are the false acceptance rate (FA) and the false rejection rate (FR). False acceptance is the case where an impostor, claiming the identity of a client, is accepted. False rejection is the case where a client, claiming his true identity, is rejected. FA and FR are given by \(FA = \frac{EI}{I} \times 100\% \) and \(FR = \frac{EC}{C} \times 100\% \), where \(EI \) is the number of impostor acceptances, \(I \) the number of impostor claims, \(EC \) the number of client rejections, and \(C \) the number of client claims. For the protocol configurations, \(I \) is 112 000 (70 impostors \(\times 8 \) shots \(\times 200 \) clients) and \(C \) is 400 (200 clients \(\times 2 \) shots).

FA and FR are functions of a threshold that can control the tradeoff between the two error rates. For a priori performance evaluation, the optimal threshold \(t_{eval} \) is estimated on the evaluation set. The FA, FR, and equal error rate (EER) are computed on the test set using \(t_{eval} \). In the a posteriori performance evaluation, the actual optimal threshold \(t_{test} \) is estimated on the test set, and the corresponding FA, FR, and EER are computed for the test set. The a posteriori
The performance of the verification system can be also represented by the ROC (receiver operating characteristic), which plots probability of FA versus probability of FR for different values of the threshold. The point on the ROC defined by FA = FR is the EER point. Better systems have a ROC curve which is closer to the origin (low FA and FR). The performance of each modality on the test sets is displayed in Table I. For single modalities, a threshold on the matching score is used to make the final decision (accept or reject). The table shows both \textit{a priori} (FA and FR) and \textit{a posteriori} (EER) performances.

The EER of the face verification algorithm is around 8\% for configuration I and 7\% for configuration II. The text-independent speaker verification achieves a FA of 1.6\% and a FR of 5.0\% for configuration I. The EER is around 4\% for configuration II. The data for text-dependent speaker verification are available for configuration I only. The error rates on the configuration I are a FA of 0\% and a FR of 1.48\%. The fusion results will be compared to the performance of the single modalities.

We expect from fusion to improve the performance of the whole system. The main motivation of combining different modalities is the increase of performance. This objective can be illustrated by comparing the ROC curves of single modalities to the ROC curve of the combined modalities after fusion. The result is depicted in Fig. 4 for the case of Bayesian fusion presented in Section IV-B. The ROC curve of the Bayesian fusion (face, text-dependent speech, and text-independent) clearly outperforms the single modalities.

The evaluation will be performed on certain combinations of modalities. The sets are defined as follows.

- C1: Face and text-dependent (HMM) in configuration I.
- C2: Face, text-independent (sphericity) and HMM in configuration I.
- C3: Face and text-independent (sphericity) in configuration II.

For the SVM-based fusion, we used polynomial and Gaussian kernels. A subset of the training set was used as an evaluation set to see how performance changes with different kernel parameters. For the polynomial kernel set, the degree 2 kernel outperformed the others for the set C1 and C2. The polynomial kernel of degree 5 was the best for set C3.

In the Gaussian kernel set, defined by $K(x, y) = \exp(-g||x - y||^2)$, the best performance was achieved on set C1 with $g = 2$, on set C2 with $g = 3$ and $g = 9$ for set C3. Fig. 5 illustrates the different performances of the Gaussian kernels on evaluation set of C1 at the EER point. The curve displays the FA rate with respect to the different values of g (the FR rate was always equal to zero on the evaluation.
set). The curve clearly shows that the minimum is achieved with parameter \(g = 2 \). These parameters will be used when comparing the SVM-fusion scheme to the other classifiers.

D. Experiments Results

The comparison of the classifiers for the set C1 (face and text-independent speaker verification) shows that MLP has a very poor performance (see Fig. 6). The SVM-Gaussian kernel is also not achieving a good performance. The SVM-polynomial kernel and the Fisher linear discriminant generate ROC curves that are very close. For very low FA rates the SVM is behaving slightly better than the Fisher linear discriminant. The Bayesian classifier achieved very good results with a minimum total error rate (i.e., FA + FR) of 0.8%, whereas the SVM-polynomial achieved a minimum total error rate of FA of 1.06%. The set C2 combines three modalities (face, text-dependent, and text-independent speaker verification) in configuration I. Here again the MLP does not achieve a good performance (see Fig. 7). The SVM-Gaussian kernel is even worse than the Fisher linear discriminant. The minimum total error rate for the Fisher classifier is 1.02% and the EER point is 0.68%. The minimum total error rate of the Bayesian classifier
is 0.6 and 0.9% for the SVM-polynomial kernel. Both methods achieve a EER point of 0.5%. The set C3 is a combination of two modalities (face and text-independent speaker verification) in configuration II. The ROC curves for this set, see Fig. 8, are very close and forming a compact group. The Fisher classifier failed in this set and did not provide good results (its ROC curve is not plotted). All the classifiers have almost the same performance with an EER of 1.9%. For low values of FA (less than 1%), the MLP classifier has the lowest FR rate. We compared also \textit{a priori} performances of the different classifiers. The results are displayed on Table II. The EER rate is computed \textit{a posteriori}, it shows how the actual performance deviates from the optimal performance.

VI. Conclusion

Multimodal person verification is a very promising approach. It combines the advantages of different techniques and may perform better than single modalities. We described a multimodal system using face information and speech for user verification. A critical question is how to combine the different modalities. We have evaluated several fusion strategies of multimodal data. In order to have a fair evaluation of the approaches, we compared the performances of the different fusion schemes on a large database (295 subjects) with a specified testing protocol.

Among all the classifiers that were evaluated (SVM-polynomial, SVM-Gaussian, C4.5, MLP, Fisher linear discriminant, Bayesian classifier), the SVM-polynomial and the Bayesian classifiers gave the best results. They also outperformed single modalities. Data modeling is necessary for the Bayesian classifier, whereas SVM do not assume any particular data distribution. Our experiments showed that these two fusion techniques do meet the requirements (accuracy and performance) of a multimodal system for identity verification.

ACKNOWLEDGMENT

The authors wish to thank J. Lütthin, G. Maître, and D. Genoud for helpful discussions and contributions to the speaker verification algorithms.

REFERENCES

